MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulc Structured version   Visualization version   Unicode version

Theorem i1fmulc 23470
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2  |-  ( ph  ->  F  e.  dom  S.1 )
i1fmulc.3  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
i1fmulc  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F )  e.  dom  S.1 )

Proof of Theorem i1fmulc
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . . . 5  |-  RR  e.  _V
21a1i 11 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  RR  e.  _V )
3 i1fmulc.2 . . . . . 6  |-  ( ph  ->  F  e.  dom  S.1 )
4 i1ff 23443 . . . . . 6  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
53, 4syl 17 . . . . 5  |-  ( ph  ->  F : RR --> RR )
65adantr 481 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  F : RR --> RR )
7 i1fmulc.3 . . . . 5  |-  ( ph  ->  A  e.  RR )
87adantr 481 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  A  e.  RR )
9 0red 10041 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  0  e.  RR )
10 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  A  =  0 )
1110oveq1d 6665 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  ( A  x.  x
)  =  ( 0  x.  x ) )
12 mul02lem2 10213 . . . . . 6  |-  ( x  e.  RR  ->  (
0  x.  x )  =  0 )
1312adantl 482 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  ( 0  x.  x
)  =  0 )
1411, 13eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  ( A  x.  x
)  =  0 )
152, 6, 8, 9, 14caofid2 6928 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  (
( RR  X.  { A } )  oF  x.  F )  =  ( RR  X.  {
0 } ) )
16 i1f0 23454 . . 3  |-  ( RR 
X.  { 0 } )  e.  dom  S.1
1715, 16syl6eqel 2709 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  (
( RR  X.  { A } )  oF  x.  F )  e. 
dom  S.1 )
18 remulcl 10021 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1918adantl 482 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
20 fconst6g 6094 . . . . . 6  |-  ( A  e.  RR  ->  ( RR  X.  { A }
) : RR --> RR )
217, 20syl 17 . . . . 5  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> RR )
221a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  _V )
23 inidm 3822 . . . . 5  |-  ( RR 
i^i  RR )  =  RR
2419, 21, 5, 22, 22, 23off 6912 . . . 4  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> RR )
2524adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( RR  X.  { A } )  oF  x.  F ) : RR --> RR )
26 i1frn 23444 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
273, 26syl 17 . . . . . 6  |-  ( ph  ->  ran  F  e.  Fin )
28 ovex 6678 . . . . . . . 8  |-  ( A  x.  y )  e. 
_V
29 eqid 2622 . . . . . . . 8  |-  ( y  e.  ran  F  |->  ( A  x.  y ) )  =  ( y  e.  ran  F  |->  ( A  x.  y ) )
3028, 29fnmpti 6022 . . . . . . 7  |-  ( y  e.  ran  F  |->  ( A  x.  y ) )  Fn  ran  F
31 dffn4 6121 . . . . . . 7  |-  ( ( y  e.  ran  F  |->  ( A  x.  y
) )  Fn  ran  F  <-> 
( y  e.  ran  F 
|->  ( A  x.  y
) ) : ran  F
-onto->
ran  ( y  e. 
ran  F  |->  ( A  x.  y ) ) )
3230, 31mpbi 220 . . . . . 6  |-  ( y  e.  ran  F  |->  ( A  x.  y ) ) : ran  F -onto-> ran  ( y  e.  ran  F 
|->  ( A  x.  y
) )
33 fofi 8252 . . . . . 6  |-  ( ( ran  F  e.  Fin  /\  ( y  e.  ran  F 
|->  ( A  x.  y
) ) : ran  F
-onto->
ran  ( y  e. 
ran  F  |->  ( A  x.  y ) ) )  ->  ran  ( y  e.  ran  F  |->  ( A  x.  y ) )  e.  Fin )
3427, 32, 33sylancl 694 . . . . 5  |-  ( ph  ->  ran  ( y  e. 
ran  F  |->  ( A  x.  y ) )  e.  Fin )
35 id 22 . . . . . . . . . . 11  |-  ( w  e.  ran  F  ->  w  e.  ran  F )
36 elsni 4194 . . . . . . . . . . . 12  |-  ( x  e.  { A }  ->  x  =  A )
3736oveq1d 6665 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  ( x  x.  w
)  =  ( A  x.  w ) )
38 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  ( A  x.  y )  =  ( A  x.  w ) )
3938eqeq2d 2632 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( x  x.  w
)  =  ( A  x.  y )  <->  ( x  x.  w )  =  ( A  x.  w ) ) )
4039rspcev 3309 . . . . . . . . . . 11  |-  ( ( w  e.  ran  F  /\  ( x  x.  w
)  =  ( A  x.  w ) )  ->  E. y  e.  ran  F ( x  x.  w
)  =  ( A  x.  y ) )
4135, 37, 40syl2anr 495 . . . . . . . . . 10  |-  ( ( x  e.  { A }  /\  w  e.  ran  F )  ->  E. y  e.  ran  F ( x  x.  w )  =  ( A  x.  y
) )
42 ovex 6678 . . . . . . . . . . 11  |-  ( x  x.  w )  e. 
_V
43 eqeq1 2626 . . . . . . . . . . . 12  |-  ( z  =  ( x  x.  w )  ->  (
z  =  ( A  x.  y )  <->  ( x  x.  w )  =  ( A  x.  y ) ) )
4443rexbidv 3052 . . . . . . . . . . 11  |-  ( z  =  ( x  x.  w )  ->  ( E. y  e.  ran  F  z  =  ( A  x.  y )  <->  E. y  e.  ran  F ( x  x.  w )  =  ( A  x.  y
) ) )
4542, 44elab 3350 . . . . . . . . . 10  |-  ( ( x  x.  w )  e.  { z  |  E. y  e.  ran  F  z  =  ( A  x.  y ) }  <->  E. y  e.  ran  F ( x  x.  w
)  =  ( A  x.  y ) )
4641, 45sylibr 224 . . . . . . . . 9  |-  ( ( x  e.  { A }  /\  w  e.  ran  F )  ->  ( x  x.  w )  e.  {
z  |  E. y  e.  ran  F  z  =  ( A  x.  y
) } )
4746adantl 482 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  { A }  /\  w  e.  ran  F ) )  ->  ( x  x.  w )  e.  {
z  |  E. y  e.  ran  F  z  =  ( A  x.  y
) } )
48 fconstg 6092 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( RR  X.  { A }
) : RR --> { A } )
497, 48syl 17 . . . . . . . 8  |-  ( ph  ->  ( RR  X.  { A } ) : RR --> { A } )
50 ffn 6045 . . . . . . . . . 10  |-  ( F : RR --> RR  ->  F  Fn  RR )
515, 50syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  RR )
52 dffn3 6054 . . . . . . . . 9  |-  ( F  Fn  RR  <->  F : RR
--> ran  F )
5351, 52sylib 208 . . . . . . . 8  |-  ( ph  ->  F : RR --> ran  F
)
5447, 49, 53, 22, 22, 23off 6912 . . . . . . 7  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F ) : RR --> { z  |  E. y  e. 
ran  F  z  =  ( A  x.  y
) } )
55 frn 6053 . . . . . . 7  |-  ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> { z  |  E. y  e.  ran  F  z  =  ( A  x.  y ) }  ->  ran  ( ( RR  X.  { A }
)  oF  x.  F )  C_  { z  |  E. y  e. 
ran  F  z  =  ( A  x.  y
) } )
5654, 55syl 17 . . . . . 6  |-  ( ph  ->  ran  ( ( RR 
X.  { A }
)  oF  x.  F )  C_  { z  |  E. y  e. 
ran  F  z  =  ( A  x.  y
) } )
5729rnmpt 5371 . . . . . 6  |-  ran  (
y  e.  ran  F  |->  ( A  x.  y
) )  =  {
z  |  E. y  e.  ran  F  z  =  ( A  x.  y
) }
5856, 57syl6sseqr 3652 . . . . 5  |-  ( ph  ->  ran  ( ( RR 
X.  { A }
)  oF  x.  F )  C_  ran  ( y  e.  ran  F 
|->  ( A  x.  y
) ) )
59 ssfi 8180 . . . . 5  |-  ( ( ran  ( y  e. 
ran  F  |->  ( A  x.  y ) )  e.  Fin  /\  ran  ( ( RR  X.  { A } )  oF  x.  F ) 
C_  ran  ( y  e.  ran  F  |->  ( A  x.  y ) ) )  ->  ran  ( ( RR  X.  { A } )  oF  x.  F )  e. 
Fin )
6034, 58, 59syl2anc 693 . . . 4  |-  ( ph  ->  ran  ( ( RR 
X.  { A }
)  oF  x.  F )  e.  Fin )
6160adantr 481 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  ran  ( ( RR  X.  { A } )  oF  x.  F )  e.  Fin )
62 frn 6053 . . . . . . . . 9  |-  ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> RR  ->  ran  ( ( RR  X.  { A } )  oF  x.  F ) 
C_  RR )
6324, 62syl 17 . . . . . . . 8  |-  ( ph  ->  ran  ( ( RR 
X.  { A }
)  oF  x.  F )  C_  RR )
6463ssdifssd 3748 . . . . . . 7  |-  ( ph  ->  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) 
C_  RR )
6564adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  C_  RR )
6665sselda 3603 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  y  e.  RR )
673, 7i1fmulclem 23469 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " {
y } )  =  ( `' F " { ( y  /  A ) } ) )
6866, 67syldan 487 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( `' ( ( RR  X.  { A } )  oF  x.  F )
" { y } )  =  ( `' F " { ( y  /  A ) } ) )
69 i1fima 23445 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( `' F " { ( y  /  A ) } )  e.  dom  vol )
703, 69syl 17 . . . . 5  |-  ( ph  ->  ( `' F " { ( y  /  A ) } )  e.  dom  vol )
7170ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( `' F " { ( y  /  A ) } )  e.  dom  vol )
7268, 71eqeltrd 2701 . . 3  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( `' ( ( RR  X.  { A } )  oF  x.  F )
" { y } )  e.  dom  vol )
7368fveq2d 6195 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { y } ) )  =  ( vol `  ( `' F " { ( y  /  A ) } ) ) )
743ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  F  e.  dom  S.1 )
757ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  e.  RR )
76 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  =/=  0 )
7766, 75, 76redivcld 10853 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( y  /  A )  e.  RR )
7866recnd 10068 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  y  e.  CC )
7975recnd 10068 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  e.  CC )
80 eldifsni 4320 . . . . . . . 8  |-  ( y  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } )  ->  y  =/=  0
)
8180adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  y  =/=  0 )
8278, 79, 81, 76divne0d 10817 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( y  /  A )  =/=  0
)
83 eldifsn 4317 . . . . . 6  |-  ( ( y  /  A )  e.  ( RR  \  { 0 } )  <-> 
( ( y  /  A )  e.  RR  /\  ( y  /  A
)  =/=  0 ) )
8477, 82, 83sylanbrc 698 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( y  /  A )  e.  ( RR  \  { 0 } ) )
85 i1fima2sn 23447 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  ( y  /  A
)  e.  ( RR 
\  { 0 } ) )  ->  ( vol `  ( `' F " { ( y  /  A ) } ) )  e.  RR )
8674, 84, 85syl2anc 693 . . . 4  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' F " { ( y  /  A ) } ) )  e.  RR )
8773, 86eqeltrd 2701 . . 3  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { y } ) )  e.  RR )
8825, 61, 72, 87i1fd 23448 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( RR  X.  { A } )  oF  x.  F )  e. 
dom  S.1 )
8917, 88pm2.61dane 2881 1  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F )  e.  dom  S.1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   RRcr 9935   0cc0 9936    x. cmul 9941    / cdiv 10684   volcvol 23232   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg1mulc  23471  i1fsub  23475  itg1sub  23476  itg2const  23507  itg2mulclem  23513  itg2monolem1  23517  i1fibl  23574  itgitg1  23575  itg2addnclem  33461  ftc1anclem5  33489
  Copyright terms: Public domain W3C validator