MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1mulc Structured version   Visualization version   Unicode version

Theorem itg1mulc 23471
Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2  |-  ( ph  ->  F  e.  dom  S.1 )
i1fmulc.3  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
itg1mulc  |-  ( ph  ->  ( S.1 `  (
( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.1 `  F ) ) )

Proof of Theorem itg1mulc
Dummy variables  k  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg10 23455 . . 3  |-  ( S.1 `  ( RR  X.  {
0 } ) )  =  0
2 reex 10027 . . . . . 6  |-  RR  e.  _V
32a1i 11 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  RR  e.  _V )
4 i1fmulc.2 . . . . . . 7  |-  ( ph  ->  F  e.  dom  S.1 )
5 i1ff 23443 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
64, 5syl 17 . . . . . 6  |-  ( ph  ->  F : RR --> RR )
76adantr 481 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  F : RR --> RR )
8 i1fmulc.3 . . . . . 6  |-  ( ph  ->  A  e.  RR )
98adantr 481 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  A  e.  RR )
10 0red 10041 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  0  e.  RR )
11 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  A  =  0 )
1211oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  ( A  x.  x
)  =  ( 0  x.  x ) )
13 mul02lem2 10213 . . . . . . 7  |-  ( x  e.  RR  ->  (
0  x.  x )  =  0 )
1413adantl 482 . . . . . 6  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  ( 0  x.  x
)  =  0 )
1512, 14eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  A  =  0 )  /\  x  e.  RR )  ->  ( A  x.  x
)  =  0 )
163, 7, 9, 10, 15caofid2 6928 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  (
( RR  X.  { A } )  oF  x.  F )  =  ( RR  X.  {
0 } ) )
1716fveq2d 6195 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  ( S.1 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  ( S.1 `  ( RR  X.  { 0 } ) ) )
18 simpr 477 . . . . 5  |-  ( (
ph  /\  A  = 
0 )  ->  A  =  0 )
1918oveq1d 6665 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  ( A  x.  ( S.1 `  F ) )  =  ( 0  x.  ( S.1 `  F ) ) )
20 itg1cl 23452 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  e.  RR )
214, 20syl 17 . . . . . . 7  |-  ( ph  ->  ( S.1 `  F
)  e.  RR )
2221recnd 10068 . . . . . 6  |-  ( ph  ->  ( S.1 `  F
)  e.  CC )
2322mul02d 10234 . . . . 5  |-  ( ph  ->  ( 0  x.  ( S.1 `  F ) )  =  0 )
2423adantr 481 . . . 4  |-  ( (
ph  /\  A  = 
0 )  ->  (
0  x.  ( S.1 `  F ) )  =  0 )
2519, 24eqtrd 2656 . . 3  |-  ( (
ph  /\  A  = 
0 )  ->  ( A  x.  ( S.1 `  F ) )  =  0 )
261, 17, 253eqtr4a 2682 . 2  |-  ( (
ph  /\  A  = 
0 )  ->  ( S.1 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  ( A  x.  ( S.1 `  F ) ) )
274, 8i1fmulc 23470 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( RR  X.  { A } )  oF  x.  F )  e.  dom  S.1 )
2827adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( RR  X.  { A } )  oF  x.  F )  e. 
dom  S.1 )
29 i1ff 23443 . . . . . . . . . . . . 13  |-  ( ( ( RR  X.  { A } )  oF  x.  F )  e. 
dom  S.1  ->  ( ( RR  X.  { A }
)  oF  x.  F ) : RR --> RR )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( RR  X.  { A } )  oF  x.  F ) : RR --> RR )
31 frn 6053 . . . . . . . . . . . 12  |-  ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> RR  ->  ran  ( ( RR  X.  { A } )  oF  x.  F ) 
C_  RR )
3230, 31syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  ran  ( ( RR  X.  { A } )  oF  x.  F ) 
C_  RR )
3332ssdifssd 3748 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  C_  RR )
3433sselda 3603 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  m  e.  RR )
3534recnd 10068 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  m  e.  CC )
368adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  A  e.  RR )
3736recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  A  =/=  0 )  ->  A  e.  CC )
3837adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  e.  CC )
39 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  =/=  0 )
4035, 38, 39divcan2d 10803 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( A  x.  ( m  /  A
) )  =  m )
414, 8i1fmulclem 23469 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  RR )  ->  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " {
m } )  =  ( `' F " { ( m  /  A ) } ) )
4234, 41syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( `' ( ( RR  X.  { A } )  oF  x.  F )
" { m }
)  =  ( `' F " { ( m  /  A ) } ) )
4342fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { m } ) )  =  ( vol `  ( `' F " { ( m  /  A ) } ) ) )
4443eqcomd 2628 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' F " { ( m  /  A ) } ) )  =  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { m } ) ) )
4540, 44oveq12d 6668 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( ( A  x.  ( m  /  A ) )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) )  =  ( m  x.  ( vol `  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " {
m } ) ) ) )
468ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  e.  RR )
4734, 46, 39redivcld 10853 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( m  /  A )  e.  RR )
4847recnd 10068 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( m  /  A )  e.  CC )
494ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  F  e.  dom  S.1 )
5046recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  e.  CC )
51 eldifsni 4320 . . . . . . . . . . . 12  |-  ( m  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } )  ->  m  =/=  0
)
5251adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  m  =/=  0 )
5335, 50, 52, 39divne0d 10817 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( m  /  A )  =/=  0
)
54 eldifsn 4317 . . . . . . . . . 10  |-  ( ( m  /  A )  e.  ( RR  \  { 0 } )  <-> 
( ( m  /  A )  e.  RR  /\  ( m  /  A
)  =/=  0 ) )
5547, 53, 54sylanbrc 698 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( m  /  A )  e.  ( RR  \  { 0 } ) )
56 i1fima2sn 23447 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  ( m  /  A
)  e.  ( RR 
\  { 0 } ) )  ->  ( vol `  ( `' F " { ( m  /  A ) } ) )  e.  RR )
5749, 55, 56syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' F " { ( m  /  A ) } ) )  e.  RR )
5857recnd 10068 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( vol `  ( `' F " { ( m  /  A ) } ) )  e.  CC )
5938, 48, 58mulassd 10063 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( ( A  x.  ( m  /  A ) )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) )  =  ( A  x.  ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) ) )
6045, 59eqtr3d 2658 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( m  x.  ( vol `  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " {
m } ) ) )  =  ( A  x.  ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) ) )
6160sumeq2dv 14433 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( m  x.  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { m } ) ) )  =  sum_ m  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( A  x.  (
( m  /  A
)  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) ) )
62 i1frn 23444 . . . . . . 7  |-  ( ( ( RR  X.  { A } )  oF  x.  F )  e. 
dom  S.1  ->  ran  ( ( RR  X.  { A } )  oF  x.  F )  e. 
Fin )
6328, 62syl 17 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  ran  ( ( RR  X.  { A } )  oF  x.  F )  e.  Fin )
64 difss 3737 . . . . . 6  |-  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  C_  ran  ( ( RR  X.  { A } )  oF  x.  F )
65 ssfi 8180 . . . . . 6  |-  ( ( ran  ( ( RR 
X.  { A }
)  oF  x.  F )  e.  Fin  /\  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) 
C_  ran  ( ( RR  X.  { A }
)  oF  x.  F ) )  -> 
( ran  ( ( RR  X.  { A }
)  oF  x.  F )  \  {
0 } )  e. 
Fin )
6663, 64, 65sylancl 694 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  e.  Fin )
6748, 58mulcld 10060 . . . . 5  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( (
m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) )  e.  CC )
6866, 37, 67fsummulc2 14516 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A  x.  sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) )  = 
sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } ) ( A  x.  ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) ) )
6961, 68eqtr4d 2659 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( m  x.  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { m } ) ) )  =  ( A  x.  sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) ) )
70 itg1val 23450 . . . 4  |-  ( ( ( RR  X.  { A } )  oF  x.  F )  e. 
dom  S.1  ->  ( S.1 `  ( ( RR  X.  { A } )  oF  x.  F ) )  =  sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( m  x.  ( vol `  ( `' ( ( RR  X.  { A } )  oF  x.  F ) " { m } ) ) ) )
7128, 70syl 17 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  ( S.1 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  = 
sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } ) ( m  x.  ( vol `  ( `' ( ( RR 
X.  { A }
)  oF  x.  F ) " {
m } ) ) ) )
724adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  F  e.  dom  S.1 )
73 itg1val 23450 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( S.1 `  F )  =  sum_ k  e.  ( ran  F  \  {
0 } ) ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
7472, 73syl 17 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  ( S.1 `  F )  = 
sum_ k  e.  ( ran  F  \  {
0 } ) ( k  x.  ( vol `  ( `' F " { k } ) ) ) )
75 id 22 . . . . . . 7  |-  ( k  =  ( m  /  A )  ->  k  =  ( m  /  A ) )
76 sneq 4187 . . . . . . . . 9  |-  ( k  =  ( m  /  A )  ->  { k }  =  { ( m  /  A ) } )
7776imaeq2d 5466 . . . . . . . 8  |-  ( k  =  ( m  /  A )  ->  ( `' F " { k } )  =  ( `' F " { ( m  /  A ) } ) )
7877fveq2d 6195 . . . . . . 7  |-  ( k  =  ( m  /  A )  ->  ( vol `  ( `' F " { k } ) )  =  ( vol `  ( `' F " { ( m  /  A ) } ) ) )
7975, 78oveq12d 6668 . . . . . 6  |-  ( k  =  ( m  /  A )  ->  (
k  x.  ( vol `  ( `' F " { k } ) ) )  =  ( ( m  /  A
)  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) )
80 eqid 2622 . . . . . . 7  |-  ( n  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) 
|->  ( n  /  A
) )  =  ( n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  |->  ( n  /  A ) )
81 eldifi 3732 . . . . . . . . 9  |-  ( n  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } )  ->  n  e.  ran  ( ( RR  X.  { A } )  oF  x.  F ) )
822a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  RR  e.  _V )
83 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( F : RR --> RR  ->  F  Fn  RR )
846, 83syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  Fn  RR )
85 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  =  ( F `  y
) )
8682, 8, 84, 85ofc1 6920 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  RR )  ->  ( ( ( RR  X.  { A } )  oF  x.  F ) `  y )  =  ( A  x.  ( F `
 y ) ) )
8786adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  (
( ( RR  X.  { A } )  oF  x.  F ) `
 y )  =  ( A  x.  ( F `  y )
) )
8887oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  (
( ( ( RR 
X.  { A }
)  oF  x.  F ) `  y
)  /  A )  =  ( ( A  x.  ( F `  y ) )  /  A ) )
896adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  A  =/=  0 )  ->  F : RR --> RR )
9089ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  ( F `  y )  e.  RR )
9190recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  ( F `  y )  e.  CC )
9237adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  A  e.  CC )
93 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  A  =/=  0 )
9491, 92, 93divcan3d 10806 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  (
( A  x.  ( F `  y )
)  /  A )  =  ( F `  y ) )
9588, 94eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  (
( ( ( RR 
X.  { A }
)  oF  x.  F ) `  y
)  /  A )  =  ( F `  y ) )
9689, 83syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  0 )  ->  F  Fn  RR )
97 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  RR  /\  y  e.  RR )  ->  ( F `  y
)  e.  ran  F
)
9896, 97sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  ( F `  y )  e.  ran  F )
9995, 98eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  (
( ( ( RR 
X.  { A }
)  oF  x.  F ) `  y
)  /  A )  e.  ran  F )
10099ralrimiva 2966 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  A. y  e.  RR  ( ( ( ( RR  X.  { A } )  oF  x.  F ) `  y )  /  A
)  e.  ran  F
)
101 ffn 6045 . . . . . . . . . . . . 13  |-  ( ( ( RR  X.  { A } )  oF  x.  F ) : RR --> RR  ->  (
( RR  X.  { A } )  oF  x.  F )  Fn  RR )
10230, 101syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  (
( RR  X.  { A } )  oF  x.  F )  Fn  RR )
103 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( ( RR  X.  { A } )  oF  x.  F ) `  y )  ->  (
n  /  A )  =  ( ( ( ( RR  X.  { A } )  oF  x.  F ) `  y )  /  A
) )
104103eleq1d 2686 . . . . . . . . . . . . 13  |-  ( n  =  ( ( ( RR  X.  { A } )  oF  x.  F ) `  y )  ->  (
( n  /  A
)  e.  ran  F  <->  ( ( ( ( RR 
X.  { A }
)  oF  x.  F ) `  y
)  /  A )  e.  ran  F ) )
105104ralrn 6362 . . . . . . . . . . . 12  |-  ( ( ( RR  X.  { A } )  oF  x.  F )  Fn  RR  ->  ( A. n  e.  ran  ( ( RR  X.  { A } )  oF  x.  F ) ( n  /  A )  e.  ran  F  <->  A. y  e.  RR  ( ( ( ( RR  X.  { A } )  oF  x.  F ) `  y )  /  A
)  e.  ran  F
) )
106102, 105syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A. n  e.  ran  ( ( RR  X.  { A } )  oF  x.  F ) ( n  /  A
)  e.  ran  F  <->  A. y  e.  RR  (
( ( ( RR 
X.  { A }
)  oF  x.  F ) `  y
)  /  A )  e.  ran  F ) )
107100, 106mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  A. n  e.  ran  ( ( RR 
X.  { A }
)  oF  x.  F ) ( n  /  A )  e. 
ran  F )
108107r19.21bi 2932 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ran  ( ( RR 
X.  { A }
)  oF  x.  F ) )  -> 
( n  /  A
)  e.  ran  F
)
10981, 108sylan2 491 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( n  /  A )  e.  ran  F )
11033sselda 3603 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  n  e.  RR )
111110recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  n  e.  CC )
11237adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  e.  CC )
113 eldifsni 4320 . . . . . . . . . 10  |-  ( n  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } )  ->  n  =/=  0
)
114113adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  n  =/=  0 )
115 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  A  =/=  0 )
116111, 112, 114, 115divne0d 10817 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( n  /  A )  =/=  0
)
117 eldifsn 4317 . . . . . . . 8  |-  ( ( n  /  A )  e.  ( ran  F  \  { 0 } )  <-> 
( ( n  /  A )  e.  ran  F  /\  ( n  /  A )  =/=  0
) )
118109, 116, 117sylanbrc 698 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( n  /  A )  e.  ( ran  F  \  {
0 } ) )
119 eldifi 3732 . . . . . . . . 9  |-  ( k  e.  ( ran  F  \  { 0 } )  ->  k  e.  ran  F )
120 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( ( ( ( RR  X.  { A } )  oF  x.  F )  Fn  RR  /\  y  e.  RR )  ->  (
( ( RR  X.  { A } )  oF  x.  F ) `
 y )  e. 
ran  ( ( RR 
X.  { A }
)  oF  x.  F ) )
121102, 120sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  (
( ( RR  X.  { A } )  oF  x.  F ) `
 y )  e. 
ran  ( ( RR 
X.  { A }
)  oF  x.  F ) )
12287, 121eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  =/=  0 )  /\  y  e.  RR )  ->  ( A  x.  ( F `  y ) )  e. 
ran  ( ( RR 
X.  { A }
)  oF  x.  F ) )
123122ralrimiva 2966 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  A. y  e.  RR  ( A  x.  ( F `  y ) )  e.  ran  (
( RR  X.  { A } )  oF  x.  F ) )
124 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( k  =  ( F `  y )  ->  ( A  x.  k )  =  ( A  x.  ( F `  y ) ) )
125124eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  ( F `  y )  ->  (
( A  x.  k
)  e.  ran  (
( RR  X.  { A } )  oF  x.  F )  <->  ( A  x.  ( F `  y
) )  e.  ran  ( ( RR  X.  { A } )  oF  x.  F ) ) )
126125ralrn 6362 . . . . . . . . . . . 12  |-  ( F  Fn  RR  ->  ( A. k  e.  ran  F ( A  x.  k
)  e.  ran  (
( RR  X.  { A } )  oF  x.  F )  <->  A. y  e.  RR  ( A  x.  ( F `  y ) )  e.  ran  (
( RR  X.  { A } )  oF  x.  F ) ) )
12796, 126syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A. k  e.  ran  F ( A  x.  k
)  e.  ran  (
( RR  X.  { A } )  oF  x.  F )  <->  A. y  e.  RR  ( A  x.  ( F `  y ) )  e.  ran  (
( RR  X.  { A } )  oF  x.  F ) ) )
128123, 127mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  0 )  ->  A. k  e.  ran  F ( A  x.  k )  e. 
ran  ( ( RR 
X.  { A }
)  oF  x.  F ) )
129128r19.21bi 2932 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ran  F )  -> 
( A  x.  k
)  e.  ran  (
( RR  X.  { A } )  oF  x.  F ) )
130119, 129sylan2 491 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  ( A  x.  k )  e.  ran  ( ( RR  X.  { A } )  oF  x.  F ) )
13137adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  A  e.  CC )
132 frn 6053 . . . . . . . . . . . . 13  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
13389, 132syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  0 )  ->  ran  F 
C_  RR )
134133ssdifssd 3748 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  0 )  ->  ( ran  F  \  { 0 } )  C_  RR )
135134sselda 3603 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  k  e.  RR )
136135recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  k  e.  CC )
137 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  A  =/=  0 )
138 eldifsni 4320 . . . . . . . . . 10  |-  ( k  e.  ( ran  F  \  { 0 } )  ->  k  =/=  0
)
139138adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  k  =/=  0 )
140131, 136, 137, 139mulne0d 10679 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  ( A  x.  k )  =/=  0
)
141 eldifsn 4317 . . . . . . . 8  |-  ( ( A  x.  k )  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } )  <-> 
( ( A  x.  k )  e.  ran  ( ( RR  X.  { A } )  oF  x.  F )  /\  ( A  x.  k )  =/=  0
) )
142130, 140, 141sylanbrc 698 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  ( A  x.  k )  e.  ( ran  ( ( RR 
X.  { A }
)  oF  x.  F )  \  {
0 } ) )
143 simpl 473 . . . . . . . . . . . 12  |-  ( ( n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  n  e.  ( ran  ( ( RR 
X.  { A }
)  oF  x.  F )  \  {
0 } ) )
144 ssel2 3598 . . . . . . . . . . . 12  |-  ( ( ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) 
C_  RR  /\  n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  n  e.  RR )
14533, 143, 144syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  n  e.  RR )
146145recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  n  e.  CC )
1478ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  A  e.  RR )
148147recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  A  e.  CC )
149135adantrl 752 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  k  e.  RR )
150149recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  k  e.  CC )
151 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  A  =/=  0 )
152146, 148, 150, 151divmuld 10823 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  (
( n  /  A
)  =  k  <->  ( A  x.  k )  =  n ) )
153152bicomd 213 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  (
( A  x.  k
)  =  n  <->  ( n  /  A )  =  k ) )
154 eqcom 2629 . . . . . . . 8  |-  ( n  =  ( A  x.  k )  <->  ( A  x.  k )  =  n )
155 eqcom 2629 . . . . . . . 8  |-  ( k  =  ( n  /  A )  <->  ( n  /  A )  =  k )
156153, 154, 1553bitr4g 303 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  /\  k  e.  ( ran  F  \  { 0 } ) ) )  ->  (
n  =  ( A  x.  k )  <->  k  =  ( n  /  A
) ) )
15780, 118, 142, 156f1o2d 6887 . . . . . 6  |-  ( (
ph  /\  A  =/=  0 )  ->  (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  |->  ( n  /  A ) ) : ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) -1-1-onto-> ( ran  F  \  {
0 } ) )
158 oveq1 6657 . . . . . . . 8  |-  ( n  =  m  ->  (
n  /  A )  =  ( m  /  A ) )
159 ovex 6678 . . . . . . . 8  |-  ( m  /  A )  e. 
_V
160158, 80, 159fvmpt 6282 . . . . . . 7  |-  ( m  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } )  ->  ( ( n  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) 
|->  ( n  /  A
) ) `  m
)  =  ( m  /  A ) )
161160adantl 482 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) )  ->  ( (
n  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } )  |->  ( n  /  A ) ) `  m )  =  ( m  /  A ) )
162 i1fima2sn 23447 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  k  e.  ( ran 
F  \  { 0 } ) )  -> 
( vol `  ( `' F " { k } ) )  e.  RR )
16372, 162sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  ( vol `  ( `' F " { k } ) )  e.  RR )
164135, 163remulcld 10070 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  ( k  x.  ( vol `  ( `' F " { k } ) ) )  e.  RR )
165164recnd 10068 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  0 )  /\  k  e.  ( ran  F  \  { 0 } ) )  ->  ( k  x.  ( vol `  ( `' F " { k } ) ) )  e.  CC )
16679, 66, 157, 161, 165fsumf1o 14454 . . . . 5  |-  ( (
ph  /\  A  =/=  0 )  ->  sum_ k  e.  ( ran  F  \  { 0 } ) ( k  x.  ( vol `  ( `' F " { k } ) ) )  =  sum_ m  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) )
16774, 166eqtrd 2656 . . . 4  |-  ( (
ph  /\  A  =/=  0 )  ->  ( S.1 `  F )  = 
sum_ m  e.  ( ran  ( ( RR  X.  { A } )  oF  x.  F ) 
\  { 0 } ) ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) )
168167oveq2d 6666 . . 3  |-  ( (
ph  /\  A  =/=  0 )  ->  ( A  x.  ( S.1 `  F ) )  =  ( A  x.  sum_ m  e.  ( ran  (
( RR  X.  { A } )  oF  x.  F )  \  { 0 } ) ( ( m  /  A )  x.  ( vol `  ( `' F " { ( m  /  A ) } ) ) ) ) )
16969, 71, 1683eqtr4d 2666 . 2  |-  ( (
ph  /\  A  =/=  0 )  ->  ( S.1 `  ( ( RR 
X.  { A }
)  oF  x.  F ) )  =  ( A  x.  ( S.1 `  F ) ) )
17026, 169pm2.61dane 2881 1  |-  ( ph  ->  ( S.1 `  (
( RR  X.  { A } )  oF  x.  F ) )  =  ( A  x.  ( S.1 `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    / cdiv 10684   sum_csu 14416   volcvol 23232   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  itg1sub  23476  itg2const  23507  itg2mulclem  23513  itg2monolem1  23517  itg2addnclem  33461
  Copyright terms: Public domain W3C validator