MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Visualization version   Unicode version

Theorem i1fmullem 23461
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
Assertion
Ref Expression
i1fmullem  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( `' ( F  oF  x.  G
) " { A } )  =  U_ y  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
Distinct variable groups:    y, A    y, F    y, G    ph, y

Proof of Theorem i1fmullem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  dom  S.1 )
2 i1ff 23443 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  F : RR --> RR )
4 ffn 6045 . . . . . . . 8  |-  ( F : RR --> RR  ->  F  Fn  RR )
53, 4syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  RR )
6 i1fadd.2 . . . . . . . . 9  |-  ( ph  ->  G  e.  dom  S.1 )
7 i1ff 23443 . . . . . . . . 9  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
86, 7syl 17 . . . . . . . 8  |-  ( ph  ->  G : RR --> RR )
9 ffn 6045 . . . . . . . 8  |-  ( G : RR --> RR  ->  G  Fn  RR )
108, 9syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  RR )
11 reex 10027 . . . . . . . 8  |-  RR  e.  _V
1211a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
13 inidm 3822 . . . . . . 7  |-  ( RR 
i^i  RR )  =  RR
145, 10, 12, 12, 13offn 6908 . . . . . 6  |-  ( ph  ->  ( F  oF  x.  G )  Fn  RR )
1514adantr 481 . . . . 5  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( F  oF  x.  G )  Fn  RR )
16 fniniseg 6338 . . . . 5  |-  ( ( F  oF  x.  G )  Fn  RR  ->  ( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <-> 
( z  e.  RR  /\  ( ( F  oF  x.  G ) `  z )  =  A ) ) )
1715, 16syl 17 . . . 4  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <-> 
( z  e.  RR  /\  ( ( F  oF  x.  G ) `  z )  =  A ) ) )
185adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  ->  F  Fn  RR )
1910adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  ->  G  Fn  RR )
2011a1i 11 . . . . . . 7  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  ->  RR  e.  _V )
21 eqidd 2623 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( F `  z )  =  ( F `  z ) )
22 eqidd 2623 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( G `  z )  =  ( G `  z ) )
2318, 19, 20, 20, 13, 21, 22ofval 6906 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( ( F  oF  x.  G
) `  z )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
2423eqeq1d 2624 . . . . 5  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  z  e.  RR )  ->  ( ( ( F  oF  x.  G ) `  z
)  =  A  <->  ( ( F `  z )  x.  ( G `  z
) )  =  A ) )
2524pm5.32da 673 . . . 4  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  RR  /\  ( ( F  oF  x.  G ) `  z
)  =  A )  <-> 
( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z )
)  =  A ) ) )
2610ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  G  Fn  RR )
27 simprl 794 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  RR )
28 fnfvelrn 6356 . . . . . . . . 9  |-  ( ( G  Fn  RR  /\  z  e.  RR )  ->  ( G `  z
)  e.  ran  G
)
2926, 27, 28syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  ran  G
)
30 eldifsni 4320 . . . . . . . . . . 11  |-  ( A  e.  ( CC  \  { 0 } )  ->  A  =/=  0
)
3130ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  A  =/=  0 )
32 simprr 796 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( F `  z )  x.  ( G `  z )
)  =  A )
333ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  F : RR --> RR )
3433, 27ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( F `  z
)  e.  RR )
3534recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( F `  z
)  e.  CC )
3635mul01d 10235 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( F `  z )  x.  0 )  =  0 )
3731, 32, 363netr4d 2871 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( F `  z )  x.  ( G `  z )
)  =/=  ( ( F `  z )  x.  0 ) )
38 oveq2 6658 . . . . . . . . . 10  |-  ( ( G `  z )  =  0  ->  (
( F `  z
)  x.  ( G `
 z ) )  =  ( ( F `
 z )  x.  0 ) )
3938necon3i 2826 . . . . . . . . 9  |-  ( ( ( F `  z
)  x.  ( G `
 z ) )  =/=  ( ( F `
 z )  x.  0 )  ->  ( G `  z )  =/=  0 )
4037, 39syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  =/=  0 )
41 eldifsn 4317 . . . . . . . 8  |-  ( ( G `  z )  e.  ( ran  G  \  { 0 } )  <-> 
( ( G `  z )  e.  ran  G  /\  ( G `  z )  =/=  0
) )
4229, 40, 41sylanbrc 698 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  ( ran 
G  \  { 0 } ) )
438ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  G : RR --> RR )
4443, 27ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  RR )
4544recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  e.  CC )
4635, 45, 40divcan4d 10807 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( ( F `
 z )  x.  ( G `  z
) )  /  ( G `  z )
)  =  ( F `
 z ) )
4732oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( ( ( F `
 z )  x.  ( G `  z
) )  /  ( G `  z )
)  =  ( A  /  ( G `  z ) ) )
4846, 47eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( F `  z
)  =  ( A  /  ( G `  z ) ) )
4933, 4syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  F  Fn  RR )
50 fniniseg 6338 . . . . . . . . . 10  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( A  /  ( G `
 z ) ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  ( G `  z )
) ) ) )
5149, 50syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( z  e.  ( `' F " { ( A  /  ( G `
 z ) ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  ( G `  z )
) ) ) )
5227, 48, 51mpbir2and 957 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  ( `' F " { ( A  /  ( G `
 z ) ) } ) )
53 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( G `  z
)  =  ( G `
 z ) )
54 fniniseg 6338 . . . . . . . . . 10  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { ( G `  z ) } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  ( G `  z
) ) ) )
5526, 54syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
( z  e.  ( `' G " { ( G `  z ) } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  ( G `  z
) ) ) )
5627, 53, 55mpbir2and 957 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  ( `' G " { ( G `  z ) } ) )
57 elin 3796 . . . . . . . 8  |-  ( z  e.  ( ( `' F " { ( A  /  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) )  <->  ( z  e.  ( `' F " { ( A  / 
( G `  z
) ) } )  /\  z  e.  ( `' G " { ( G `  z ) } ) ) )
5852, 56, 57sylanbrc 698 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  -> 
z  e.  ( ( `' F " { ( A  /  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )
59 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  ( G `  z )  ->  ( A  /  y )  =  ( A  /  ( G `  z )
) )
6059sneqd 4189 . . . . . . . . . . 11  |-  ( y  =  ( G `  z )  ->  { ( A  /  y ) }  =  { ( A  /  ( G `
 z ) ) } )
6160imaeq2d 5466 . . . . . . . . . 10  |-  ( y  =  ( G `  z )  ->  ( `' F " { ( A  /  y ) } )  =  ( `' F " { ( A  /  ( G `
 z ) ) } ) )
62 sneq 4187 . . . . . . . . . . 11  |-  ( y  =  ( G `  z )  ->  { y }  =  { ( G `  z ) } )
6362imaeq2d 5466 . . . . . . . . . 10  |-  ( y  =  ( G `  z )  ->  ( `' G " { y } )  =  ( `' G " { ( G `  z ) } ) )
6461, 63ineq12d 3815 . . . . . . . . 9  |-  ( y  =  ( G `  z )  ->  (
( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  =  ( ( `' F " { ( A  /  ( G `
 z ) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )
6564eleq2d 2687 . . . . . . . 8  |-  ( y  =  ( G `  z )  ->  (
z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) )  <->  z  e.  ( ( `' F " { ( A  / 
( G `  z
) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) ) )
6665rspcev 3309 . . . . . . 7  |-  ( ( ( G `  z
)  e.  ( ran 
G  \  { 0 } )  /\  z  e.  ( ( `' F " { ( A  / 
( G `  z
) ) } )  i^i  ( `' G " { ( G `  z ) } ) ) )  ->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
6742, 58, 66syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) )  ->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) ) )
6867ex 450 . . . . 5  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A )  ->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) ) )
69 fniniseg 6338 . . . . . . . . . . 11  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { ( A  /  y ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  y
) ) ) )
7018, 69syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' F " { ( A  /  y ) } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  ( A  /  y
) ) ) )
71 fniniseg 6338 . . . . . . . . . . 11  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
7219, 71syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
7370, 72anbi12d 747 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  ( `' F " { ( A  / 
y ) } )  /\  z  e.  ( `' G " { y } ) )  <->  ( (
z  e.  RR  /\  ( F `  z )  =  ( A  / 
y ) )  /\  ( z  e.  RR  /\  ( G `  z
)  =  y ) ) ) )
74 elin 3796 . . . . . . . . 9  |-  ( z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  ( `' F " { ( A  / 
y ) } )  /\  z  e.  ( `' G " { y } ) ) )
75 anandi 871 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( F `  z )  =  ( A  /  y )  /\  ( G `  z )  =  y ) )  <->  ( (
z  e.  RR  /\  ( F `  z )  =  ( A  / 
y ) )  /\  ( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
7673, 74, 753bitr4g 303 . . . . . . . 8  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  RR  /\  ( ( F `  z )  =  ( A  / 
y )  /\  ( G `  z )  =  y ) ) ) )
7776adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  y  e.  ( ran  G  \  {
0 } ) )  ->  ( z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  <->  ( z  e.  RR  /\  ( ( F `  z )  =  ( A  / 
y )  /\  ( G `  z )  =  y ) ) ) )
78 eldifi 3732 . . . . . . . . . . . 12  |-  ( A  e.  ( CC  \  { 0 } )  ->  A  e.  CC )
7978ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  A  e.  CC )
808ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  G : RR --> RR )
81 frn 6053 . . . . . . . . . . . . . 14  |-  ( G : RR --> RR  ->  ran 
G  C_  RR )
8280, 81syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  ran  G 
C_  RR )
83 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  ( ran  G  \  { 0 } ) )
84 eldifsn 4317 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ran  G  \  { 0 } )  <-> 
( y  e.  ran  G  /\  y  =/=  0
) )
8583, 84sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  (
y  e.  ran  G  /\  y  =/=  0
) )
8685simpld 475 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  ran  G )
8782, 86sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  RR )
8887recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  e.  CC )
8985simprd 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  y  =/=  0 )
9079, 88, 89divcan1d 10802 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  (
( A  /  y
)  x.  y )  =  A )
91 oveq12 6659 . . . . . . . . . . 11  |-  ( ( ( F `  z
)  =  ( A  /  y )  /\  ( G `  z )  =  y )  -> 
( ( F `  z )  x.  ( G `  z )
)  =  ( ( A  /  y )  x.  y ) )
9291eqeq1d 2624 . . . . . . . . . 10  |-  ( ( ( F `  z
)  =  ( A  /  y )  /\  ( G `  z )  =  y )  -> 
( ( ( F `
 z )  x.  ( G `  z
) )  =  A  <-> 
( ( A  / 
y )  x.  y
)  =  A ) )
9390, 92syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  ( y  e.  ( ran  G  \  { 0 } )  /\  z  e.  RR ) )  ->  (
( ( F `  z )  =  ( A  /  y )  /\  ( G `  z )  =  y )  ->  ( ( F `  z )  x.  ( G `  z
) )  =  A ) )
9493anassrs 680 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  ( CC  \  { 0 } ) )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( ( F `  z )  =  ( A  /  y )  /\  ( G `  z )  =  y )  ->  ( ( F `  z )  x.  ( G `  z
) )  =  A ) )
9594imdistanda 729 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  y  e.  ( ran  G  \  {
0 } ) )  ->  ( ( z  e.  RR  /\  (
( F `  z
)  =  ( A  /  y )  /\  ( G `  z )  =  y ) )  ->  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) ) )
9677, 95sylbid 230 . . . . . 6  |-  ( ( ( ph  /\  A  e.  ( CC  \  {
0 } ) )  /\  y  e.  ( ran  G  \  {
0 } ) )  ->  ( z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  ->  ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A ) ) )
9796rexlimdva 3031 . . . . 5  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) )  -> 
( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z )
)  =  A ) ) )
9868, 97impbid 202 . . . 4  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( ( z  e.  RR  /\  ( ( F `  z )  x.  ( G `  z ) )  =  A )  <->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) ) )
9917, 25, 983bitrd 294 . . 3  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <->  E. y  e.  ( ran  G  \  { 0 } ) z  e.  ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) ) ) )
100 eliun 4524 . . 3  |-  ( z  e.  U_ y  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) )  <->  E. y  e.  ( ran  G  \  {
0 } ) z  e.  ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
10199, 100syl6bbr 278 . 2  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( z  e.  ( `' ( F  oF  x.  G ) " { A } )  <-> 
z  e.  U_ y  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( A  / 
y ) } )  i^i  ( `' G " { y } ) ) ) )
102101eqrdv 2620 1  |-  ( (
ph  /\  A  e.  ( CC  \  { 0 } ) )  -> 
( `' ( F  oF  x.  G
) " { A } )  =  U_ y  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( A  /  y ) } )  i^i  ( `' G " { y } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   U_ciun 4520   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    / cdiv 10684   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-sum 14417  df-itg1 23389
This theorem is referenced by:  i1fmul  23463
  Copyright terms: Public domain W3C validator