MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmul Structured version   Visualization version   Unicode version

Theorem i1fmul 23463
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
Assertion
Ref Expression
i1fmul  |-  ( ph  ->  ( F  oF  x.  G )  e. 
dom  S.1 )

Proof of Theorem i1fmul
Dummy variables  y 
z  w  v  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10021 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
21adantl 482 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
3 i1fadd.1 . . . 4  |-  ( ph  ->  F  e.  dom  S.1 )
4 i1ff 23443 . . . 4  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
53, 4syl 17 . . 3  |-  ( ph  ->  F : RR --> RR )
6 i1fadd.2 . . . 4  |-  ( ph  ->  G  e.  dom  S.1 )
7 i1ff 23443 . . . 4  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
86, 7syl 17 . . 3  |-  ( ph  ->  G : RR --> RR )
9 reex 10027 . . . 4  |-  RR  e.  _V
109a1i 11 . . 3  |-  ( ph  ->  RR  e.  _V )
11 inidm 3822 . . 3  |-  ( RR 
i^i  RR )  =  RR
122, 5, 8, 10, 10, 11off 6912 . 2  |-  ( ph  ->  ( F  oF  x.  G ) : RR --> RR )
13 i1frn 23444 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
143, 13syl 17 . . . . 5  |-  ( ph  ->  ran  F  e.  Fin )
15 i1frn 23444 . . . . . 6  |-  ( G  e.  dom  S.1  ->  ran 
G  e.  Fin )
166, 15syl 17 . . . . 5  |-  ( ph  ->  ran  G  e.  Fin )
17 xpfi 8231 . . . . 5  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  e.  Fin )  ->  ( ran  F  X.  ran  G )  e. 
Fin )
1814, 16, 17syl2anc 693 . . . 4  |-  ( ph  ->  ( ran  F  X.  ran  G )  e.  Fin )
19 eqid 2622 . . . . . 6  |-  ( u  e.  ran  F , 
v  e.  ran  G  |->  ( u  x.  v
) )  =  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )
20 ovex 6678 . . . . . 6  |-  ( u  x.  v )  e. 
_V
2119, 20fnmpt2i 7239 . . . . 5  |-  ( u  e.  ran  F , 
v  e.  ran  G  |->  ( u  x.  v
) )  Fn  ( ran  F  X.  ran  G
)
22 dffn4 6121 . . . . 5  |-  ( ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )  Fn  ( ran  F  X.  ran  G
)  <->  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) : ( ran 
F  X.  ran  G
) -onto-> ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) )
2321, 22mpbi 220 . . . 4  |-  ( u  e.  ran  F , 
v  e.  ran  G  |->  ( u  x.  v
) ) : ( ran  F  X.  ran  G ) -onto-> ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) )
24 fofi 8252 . . . 4  |-  ( ( ( ran  F  X.  ran  G )  e.  Fin  /\  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) ) : ( ran  F  X.  ran  G ) -onto-> ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) )  ->  ran  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )  e.  Fin )
2518, 23, 24sylancl 694 . . 3  |-  ( ph  ->  ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) )  e.  Fin )
26 eqid 2622 . . . . . . . . 9  |-  ( x  x.  y )  =  ( x  x.  y
)
27 rspceov 6692 . . . . . . . . 9  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G  /\  ( x  x.  y )  =  ( x  x.  y ) )  ->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y )  =  ( u  x.  v
) )
2826, 27mp3an3 1413 . . . . . . . 8  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G )  ->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y )  =  ( u  x.  v
) )
29 ovex 6678 . . . . . . . . 9  |-  ( x  x.  y )  e. 
_V
30 eqeq1 2626 . . . . . . . . . 10  |-  ( w  =  ( x  x.  y )  ->  (
w  =  ( u  x.  v )  <->  ( x  x.  y )  =  ( u  x.  v ) ) )
31302rexbidv 3057 . . . . . . . . 9  |-  ( w  =  ( x  x.  y )  ->  ( E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v )  <->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y )  =  ( u  x.  v
) ) )
3229, 31elab 3350 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) }  <->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y
)  =  ( u  x.  v ) )
3328, 32sylibr 224 . . . . . . 7  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G )  ->  ( x  x.  y )  e.  {
w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) } )
3433adantl 482 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ran  F  /\  y  e.  ran  G ) )  ->  ( x  x.  y )  e.  {
w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) } )
35 ffn 6045 . . . . . . . 8  |-  ( F : RR --> RR  ->  F  Fn  RR )
365, 35syl 17 . . . . . . 7  |-  ( ph  ->  F  Fn  RR )
37 dffn3 6054 . . . . . . 7  |-  ( F  Fn  RR  <->  F : RR
--> ran  F )
3836, 37sylib 208 . . . . . 6  |-  ( ph  ->  F : RR --> ran  F
)
39 ffn 6045 . . . . . . . 8  |-  ( G : RR --> RR  ->  G  Fn  RR )
408, 39syl 17 . . . . . . 7  |-  ( ph  ->  G  Fn  RR )
41 dffn3 6054 . . . . . . 7  |-  ( G  Fn  RR  <->  G : RR
--> ran  G )
4240, 41sylib 208 . . . . . 6  |-  ( ph  ->  G : RR --> ran  G
)
4334, 38, 42, 10, 10, 11off 6912 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G ) : RR --> { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) } )
44 frn 6053 . . . . 5  |-  ( ( F  oF  x.  G ) : RR --> { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) }  ->  ran  ( F  oF  x.  G )  C_  { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) } )
4543, 44syl 17 . . . 4  |-  ( ph  ->  ran  ( F  oF  x.  G )  C_ 
{ w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) } )
4619rnmpt2 6770 . . . 4  |-  ran  (
u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )  =  {
w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) }
4745, 46syl6sseqr 3652 . . 3  |-  ( ph  ->  ran  ( F  oF  x.  G )  C_ 
ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) )
48 ssfi 8180 . . 3  |-  ( ( ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) )  e.  Fin  /\  ran  ( F  oF  x.  G )  C_  ran  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) ) )  ->  ran  ( F  oF  x.  G )  e. 
Fin )
4925, 47, 48syl2anc 693 . 2  |-  ( ph  ->  ran  ( F  oF  x.  G )  e.  Fin )
50 frn 6053 . . . . . . . 8  |-  ( ( F  oF  x.  G ) : RR --> RR  ->  ran  ( F  oF  x.  G
)  C_  RR )
5112, 50syl 17 . . . . . . 7  |-  ( ph  ->  ran  ( F  oF  x.  G )  C_  RR )
52 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
5351, 52syl6ss 3615 . . . . . 6  |-  ( ph  ->  ran  ( F  oF  x.  G )  C_  CC )
5453ssdifd 3746 . . . . 5  |-  ( ph  ->  ( ran  ( F  oF  x.  G
)  \  { 0 } )  C_  ( CC  \  { 0 } ) )
5554sselda 3603 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  y  e.  ( CC  \  { 0 } ) )
563, 6i1fmullem 23461 . . . 4  |-  ( (
ph  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( `' ( F  oF  x.  G
) " { y } )  =  U_ z  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )
5755, 56syldan 487 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( `' ( F  oF  x.  G ) " {
y } )  = 
U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )
58 difss 3737 . . . . . 6  |-  ( ran 
G  \  { 0 } )  C_  ran  G
59 ssfi 8180 . . . . . 6  |-  ( ( ran  G  e.  Fin  /\  ( ran  G  \  { 0 } ) 
C_  ran  G )  ->  ( ran  G  \  { 0 } )  e.  Fin )
6016, 58, 59sylancl 694 . . . . 5  |-  ( ph  ->  ( ran  G  \  { 0 } )  e.  Fin )
61 i1fima 23445 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( `' F " { ( y  /  z ) } )  e.  dom  vol )
623, 61syl 17 . . . . . . 7  |-  ( ph  ->  ( `' F " { ( y  / 
z ) } )  e.  dom  vol )
63 i1fima 23445 . . . . . . . 8  |-  ( G  e.  dom  S.1  ->  ( `' G " { z } )  e.  dom  vol )
646, 63syl 17 . . . . . . 7  |-  ( ph  ->  ( `' G " { z } )  e.  dom  vol )
65 inmbl 23310 . . . . . . 7  |-  ( ( ( `' F " { ( y  / 
z ) } )  e.  dom  vol  /\  ( `' G " { z } )  e.  dom  vol )  ->  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  e. 
dom  vol )
6662, 64, 65syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
6766ralrimivw 2967 . . . . 5  |-  ( ph  ->  A. z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
68 finiunmbl 23312 . . . . 5  |-  ( ( ( ran  G  \  { 0 } )  e.  Fin  /\  A. z  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  e. 
dom  vol )  ->  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
6960, 67, 68syl2anc 693 . . . 4  |-  ( ph  ->  U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
7069adantr 481 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
7157, 70eqeltrd 2701 . 2  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( `' ( F  oF  x.  G ) " {
y } )  e. 
dom  vol )
72 mblvol 23298 . . . 4  |-  ( ( `' ( F  oF  x.  G ) " { y } )  e.  dom  vol  ->  ( vol `  ( `' ( F  oF  x.  G ) " { y } ) )  =  ( vol* `  ( `' ( F  oF  x.  G ) " {
y } ) ) )
7371, 72syl 17 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( vol `  ( `' ( F  oF  x.  G
) " { y } ) )  =  ( vol* `  ( `' ( F  oF  x.  G ) " { y } ) ) )
74 mblss 23299 . . . . 5  |-  ( ( `' ( F  oF  x.  G ) " { y } )  e.  dom  vol  ->  ( `' ( F  oF  x.  G ) " { y } ) 
C_  RR )
7571, 74syl 17 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( `' ( F  oF  x.  G ) " {
y } )  C_  RR )
7660adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( ran  G 
\  { 0 } )  e.  Fin )
77 inss2 3834 . . . . . . 7  |-  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } )
7877a1i 11 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } ) )
7964ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( `' G " { z } )  e.  dom  vol )
80 mblss 23299 . . . . . . 7  |-  ( ( `' G " { z } )  e.  dom  vol 
->  ( `' G " { z } ) 
C_  RR )
8179, 80syl 17 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( `' G " { z } )  C_  RR )
82 mblvol 23298 . . . . . . . 8  |-  ( ( `' G " { z } )  e.  dom  vol 
->  ( vol `  ( `' G " { z } ) )  =  ( vol* `  ( `' G " { z } ) ) )
8379, 82syl 17 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol `  ( `' G " { z } ) )  =  ( vol* `  ( `' G " { z } ) ) )
846adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  G  e.  dom  S.1 )
85 i1fima2sn 23447 . . . . . . . 8  |-  ( ( G  e.  dom  S.1  /\  z  e.  ( ran 
G  \  { 0 } ) )  -> 
( vol `  ( `' G " { z } ) )  e.  RR )
8684, 85sylan 488 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol `  ( `' G " { z } ) )  e.  RR )
8783, 86eqeltrrd 2702 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol* `  ( `' G " { z } ) )  e.  RR )
88 ovolsscl 23254 . . . . . 6  |-  ( ( ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } )  /\  ( `' G " { z } )  C_  RR  /\  ( vol* `  ( `' G " { z } ) )  e.  RR )  ->  ( vol* `  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
8978, 81, 87, 88syl3anc 1326 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol* `  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
9076, 89fsumrecl 14465 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol* `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
9157fveq2d 6195 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( vol* `  ( `' ( F  oF  x.  G ) " {
y } ) )  =  ( vol* `  U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
92 mblss 23299 . . . . . . . . . 10  |-  ( ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol  ->  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR )
9366, 92syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR )
9493ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR )
9594, 89jca 554 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  oF  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  (
( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR  /\  ( vol* `  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR ) )
9695ralrimiva 2966 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  A. z  e.  ( ran  G  \  { 0 } ) ( ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  C_  RR  /\  ( vol* `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR ) )
97 ovolfiniun 23269 . . . . . 6  |-  ( ( ( ran  G  \  { 0 } )  e.  Fin  /\  A. z  e.  ( ran  G 
\  { 0 } ) ( ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  C_  RR  /\  ( vol* `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR ) )  ->  ( vol* `  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  <_  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol* `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
9876, 96, 97syl2anc 693 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( vol* `  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  <_  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol* `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
9991, 98eqbrtrd 4675 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( vol* `  ( `' ( F  oF  x.  G ) " {
y } ) )  <_  sum_ z  e.  ( ran  G  \  {
0 } ) ( vol* `  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
100 ovollecl 23251 . . . 4  |-  ( ( ( `' ( F  oF  x.  G
) " { y } )  C_  RR  /\ 
sum_ z  e.  ( ran  G  \  {
0 } ) ( vol* `  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR  /\  ( vol* `  ( `' ( F  oF  x.  G ) " { y } ) )  <_  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol* `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )  -> 
( vol* `  ( `' ( F  oF  x.  G ) " { y } ) )  e.  RR )
10175, 90, 99, 100syl3anc 1326 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( vol* `  ( `' ( F  oF  x.  G ) " {
y } ) )  e.  RR )
10273, 101eqeltrd 2701 . 2  |-  ( (
ph  /\  y  e.  ( ran  ( F  oF  x.  G )  \  { 0 } ) )  ->  ( vol `  ( `' ( F  oF  x.  G
) " { y } ) )  e.  RR )
10312, 49, 71, 102i1fd 23448 1  |-  ( ph  ->  ( F  oF  x.  G )  e. 
dom  S.1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   U_ciun 4520   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    <_ cle 10075    / cdiv 10684   sum_csu 14416   vol*covol 23231   volcvol 23232   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  mbfmullem2  23491  ftc1anclem3  33487
  Copyright terms: Public domain W3C validator