MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacmp Structured version   Visualization version   Unicode version

Theorem imacmp 21200
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
imacmp  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Kt  ( F
" A ) )  e.  Comp )

Proof of Theorem imacmp
StepHypRef Expression
1 df-ima 5127 . . 3  |-  ( F
" A )  =  ran  ( F  |`  A )
21oveq2i 6661 . 2  |-  ( Kt  ( F " A ) )  =  ( Kt  ran  ( F  |`  A ) )
3 simpr 477 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Jt  A )  e.  Comp )
4 simpl 473 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  F  e.  ( J  Cn  K ) )
5 inss2 3834 . . . . 5  |-  ( A  i^i  U. J ) 
C_  U. J
6 eqid 2622 . . . . . 6  |-  U. J  =  U. J
76cnrest 21089 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( A  i^i  U. J
)  C_  U. J )  ->  ( F  |`  ( A  i^i  U. J
) )  e.  ( ( Jt  ( A  i^i  U. J ) )  Cn  K ) )
84, 5, 7sylancl 694 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  ( A  i^i  U. J
) )  e.  ( ( Jt  ( A  i^i  U. J ) )  Cn  K ) )
9 resdmres 5625 . . . . 5  |-  ( F  |`  dom  ( F  |`  A ) )  =  ( F  |`  A )
10 dmres 5419 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
11 eqid 2622 . . . . . . . . . 10  |-  U. K  =  U. K
126, 11cnf 21050 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
13 fdm 6051 . . . . . . . . 9  |-  ( F : U. J --> U. K  ->  dom  F  =  U. J )
144, 12, 133syl 18 . . . . . . . 8  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  dom  F  =  U. J )
1514ineq2d 3814 . . . . . . 7  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( A  i^i  dom 
F )  =  ( A  i^i  U. J
) )
1610, 15syl5eq 2668 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  dom  ( F  |`  A )  =  ( A  i^i  U. J
) )
1716reseq2d 5396 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  dom  ( F  |`  A ) )  =  ( F  |`  ( A  i^i  U. J ) ) )
189, 17syl5eqr 2670 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  A )  =  ( F  |`  ( A  i^i  U. J ) ) )
19 cmptop 21198 . . . . . . 7  |-  ( ( Jt  A )  e.  Comp  -> 
( Jt  A )  e.  Top )
2019adantl 482 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Jt  A )  e.  Top )
21 restrcl 20961 . . . . . 6  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)
226restin 20970 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  U. J ) ) )
2320, 21, 223syl 18 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  U. J ) ) )
2423oveq1d 6665 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( ( Jt  A )  Cn  K )  =  ( ( Jt  ( A  i^i  U. J
) )  Cn  K
) )
258, 18, 243eltr4d 2716 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
) )
26 rncmp 21199 . . 3  |-  ( ( ( Jt  A )  e.  Comp  /\  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )  ->  ( Kt  ran  ( F  |`  A ) )  e.  Comp )
273, 25, 26syl2anc 693 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Kt  ran  ( F  |`  A ) )  e.  Comp )
282, 27syl5eqel 2705 1  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Kt  ( F
" A ) )  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   -->wf 5884  (class class class)co 6650   ↾t crest 16081   Topctop 20698    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190
This theorem is referenced by:  kgencn3  21361  txkgen  21455  xkoco1cn  21460  xkococnlem  21462  cmphaushmeo  21603  cnheiborlem  22753
  Copyright terms: Public domain W3C validator