| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > discmp | Structured version Visualization version Unicode version | ||
| Description: A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| discmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop 20799 |
. . . 4
| |
| 2 | pwfi 8261 |
. . . . 5
| |
| 3 | 2 | biimpi 206 |
. . . 4
|
| 4 | 1, 3 | elind 3798 |
. . 3
|
| 5 | fincmp 21196 |
. . 3
| |
| 6 | 4, 5 | syl 17 |
. 2
|
| 7 | simpr 477 |
. . . . . . . 8
| |
| 8 | 7 | snssd 4340 |
. . . . . . 7
|
| 9 | snex 4908 |
. . . . . . . 8
| |
| 10 | 9 | elpw 4164 |
. . . . . . 7
|
| 11 | 8, 10 | sylibr 224 |
. . . . . 6
|
| 12 | eqid 2622 |
. . . . . 6
| |
| 13 | 11, 12 | fmptd 6385 |
. . . . 5
|
| 14 | frn 6053 |
. . . . 5
| |
| 15 | 13, 14 | syl 17 |
. . . 4
|
| 16 | 12 | rnmpt 5371 |
. . . . . . 7
|
| 17 | 16 | unieqi 4445 |
. . . . . 6
|
| 18 | 9 | dfiun2 4554 |
. . . . . 6
|
| 19 | iunid 4575 |
. . . . . 6
| |
| 20 | 17, 18, 19 | 3eqtr2ri 2651 |
. . . . 5
|
| 21 | 20 | a1i 11 |
. . . 4
|
| 22 | unipw 4918 |
. . . . . 6
| |
| 23 | 22 | eqcomi 2631 |
. . . . 5
|
| 24 | 23 | cmpcov 21192 |
. . . 4
|
| 25 | 15, 21, 24 | mpd3an23 1426 |
. . 3
|
| 26 | elin 3796 |
. . . . . . 7
| |
| 27 | 26 | simprbi 480 |
. . . . . 6
|
| 28 | 26 | simplbi 476 |
. . . . . . . 8
|
| 29 | 28 | elpwid 4170 |
. . . . . . 7
|
| 30 | snfi 8038 |
. . . . . . . . . 10
| |
| 31 | 30 | rgenw 2924 |
. . . . . . . . 9
|
| 32 | 12 | fmpt 6381 |
. . . . . . . . 9
|
| 33 | 31, 32 | mpbi 220 |
. . . . . . . 8
|
| 34 | frn 6053 |
. . . . . . . 8
| |
| 35 | 33, 34 | mp1i 13 |
. . . . . . 7
|
| 36 | 29, 35 | sstrd 3613 |
. . . . . 6
|
| 37 | unifi 8255 |
. . . . . 6
| |
| 38 | 27, 36, 37 | syl2anc 693 |
. . . . 5
|
| 39 | eleq1 2689 |
. . . . 5
| |
| 40 | 38, 39 | syl5ibrcom 237 |
. . . 4
|
| 41 | 40 | rexlimiv 3027 |
. . 3
|
| 42 | 25, 41 | syl 17 |
. 2
|
| 43 | 6, 42 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-top 20699 df-cmp 21190 |
| This theorem is referenced by: disllycmp 21301 xkohaus 21456 xkoptsub 21457 xkopt 21458 |
| Copyright terms: Public domain | W3C validator |