MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inawinalem Structured version   Visualization version   Unicode version

Theorem inawinalem 9511
Description: Lemma for inawina 9512. (Contributed by Mario Carneiro, 8-Jun-2014.)
Assertion
Ref Expression
inawinalem  |-  ( A  e.  On  ->  ( A. x  e.  A  ~P x  ~<  A  ->  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
Distinct variable group:    x, A, y

Proof of Theorem inawinalem
StepHypRef Expression
1 sdomdom 7983 . . . . 5  |-  ( ~P x  ~<  A  ->  ~P x  ~<_  A )
2 ondomen 8860 . . . . . 6  |-  ( ( A  e.  On  /\  ~P x  ~<_  A )  ->  ~P x  e.  dom  card )
3 isnum2 8771 . . . . . 6  |-  ( ~P x  e.  dom  card  <->  E. y  e.  On  y  ~~  ~P x )
42, 3sylib 208 . . . . 5  |-  ( ( A  e.  On  /\  ~P x  ~<_  A )  ->  E. y  e.  On  y  ~~  ~P x )
51, 4sylan2 491 . . . 4  |-  ( ( A  e.  On  /\  ~P x  ~<  A )  ->  E. y  e.  On  y  ~~  ~P x )
6 ensdomtr 8096 . . . . . . . . 9  |-  ( ( y  ~~  ~P x  /\  ~P x  ~<  A )  ->  y  ~<  A )
76ad2ant2l 782 . . . . . . . 8  |-  ( ( ( y  e.  On  /\  y  ~~  ~P x
)  /\  ( A  e.  On  /\  ~P x  ~<  A ) )  -> 
y  ~<  A )
8 sdomel 8107 . . . . . . . . 9  |-  ( ( y  e.  On  /\  A  e.  On )  ->  ( y  ~<  A  -> 
y  e.  A ) )
98ad2ant2r 783 . . . . . . . 8  |-  ( ( ( y  e.  On  /\  y  ~~  ~P x
)  /\  ( A  e.  On  /\  ~P x  ~<  A ) )  -> 
( y  ~<  A  -> 
y  e.  A ) )
107, 9mpd 15 . . . . . . 7  |-  ( ( ( y  e.  On  /\  y  ~~  ~P x
)  /\  ( A  e.  On  /\  ~P x  ~<  A ) )  -> 
y  e.  A )
11 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
1211canth2 8113 . . . . . . . . 9  |-  x  ~<  ~P x
13 ensym 8005 . . . . . . . . 9  |-  ( y 
~~  ~P x  ->  ~P x  ~~  y )
14 sdomentr 8094 . . . . . . . . 9  |-  ( ( x  ~<  ~P x  /\  ~P x  ~~  y
)  ->  x  ~<  y )
1512, 13, 14sylancr 695 . . . . . . . 8  |-  ( y 
~~  ~P x  ->  x  ~<  y )
1615ad2antlr 763 . . . . . . 7  |-  ( ( ( y  e.  On  /\  y  ~~  ~P x
)  /\  ( A  e.  On  /\  ~P x  ~<  A ) )  ->  x  ~<  y )
1710, 16jca 554 . . . . . 6  |-  ( ( ( y  e.  On  /\  y  ~~  ~P x
)  /\  ( A  e.  On  /\  ~P x  ~<  A ) )  -> 
( y  e.  A  /\  x  ~<  y ) )
1817expcom 451 . . . . 5  |-  ( ( A  e.  On  /\  ~P x  ~<  A )  ->  ( ( y  e.  On  /\  y  ~~  ~P x )  -> 
( y  e.  A  /\  x  ~<  y ) ) )
1918reximdv2 3014 . . . 4  |-  ( ( A  e.  On  /\  ~P x  ~<  A )  ->  ( E. y  e.  On  y  ~~  ~P x  ->  E. y  e.  A  x  ~<  y ) )
205, 19mpd 15 . . 3  |-  ( ( A  e.  On  /\  ~P x  ~<  A )  ->  E. y  e.  A  x  ~<  y )
2120ex 450 . 2  |-  ( A  e.  On  ->  ( ~P x  ~<  A  ->  E. y  e.  A  x  ~<  y ) )
2221ralimdv 2963 1  |-  ( A  e.  On  ->  ( A. x  e.  A  ~P x  ~<  A  ->  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   Oncon0 5723    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  inawina  9512  tskcard  9603  gruina  9640
  Copyright terms: Public domain W3C validator