MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem5 Structured version   Visualization version   Unicode version

Theorem inf3lem5 8529
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lem5  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( A  e. 
om  /\  B  e.  A )  ->  ( F `  B )  C.  ( F `  A
) ) )
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lem5
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7075 . . . 4  |-  ( ( B  e.  A  /\  A  e.  om )  ->  B  e.  om )
21ancoms 469 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  B  e.  om )
3 nnord 7073 . . . . . . 7  |-  ( A  e.  om  ->  Ord  A )
4 ordsucss 7018 . . . . . . 7  |-  ( Ord 
A  ->  ( B  e.  A  ->  suc  B  C_  A ) )
53, 4syl 17 . . . . . 6  |-  ( A  e.  om  ->  ( B  e.  A  ->  suc 
B  C_  A )
)
65adantr 481 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  ->  suc  B  C_  A
) )
7 peano2b 7081 . . . . . 6  |-  ( B  e.  om  <->  suc  B  e. 
om )
8 fveq2 6191 . . . . . . . . . 10  |-  ( v  =  suc  B  -> 
( F `  v
)  =  ( F `
 suc  B )
)
98psseq2d 3700 . . . . . . . . 9  |-  ( v  =  suc  B  -> 
( ( F `  B )  C.  ( F `  v )  <->  ( F `  B ) 
C.  ( F `  suc  B ) ) )
109imbi2d 330 . . . . . . . 8  |-  ( v  =  suc  B  -> 
( ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  B )  C.  ( F `  v
) )  <->  ( (
x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  suc  B ) ) ) )
11 fveq2 6191 . . . . . . . . . 10  |-  ( v  =  u  ->  ( F `  v )  =  ( F `  u ) )
1211psseq2d 3700 . . . . . . . . 9  |-  ( v  =  u  ->  (
( F `  B
)  C.  ( F `  v )  <->  ( F `  B )  C.  ( F `  u )
) )
1312imbi2d 330 . . . . . . . 8  |-  ( v  =  u  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  v )
)  <->  ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  B )  C.  ( F `  u
) ) ) )
14 fveq2 6191 . . . . . . . . . 10  |-  ( v  =  suc  u  -> 
( F `  v
)  =  ( F `
 suc  u )
)
1514psseq2d 3700 . . . . . . . . 9  |-  ( v  =  suc  u  -> 
( ( F `  B )  C.  ( F `  v )  <->  ( F `  B ) 
C.  ( F `  suc  u ) ) )
1615imbi2d 330 . . . . . . . 8  |-  ( v  =  suc  u  -> 
( ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  B )  C.  ( F `  v
) )  <->  ( (
x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  suc  u ) ) ) )
17 fveq2 6191 . . . . . . . . . 10  |-  ( v  =  A  ->  ( F `  v )  =  ( F `  A ) )
1817psseq2d 3700 . . . . . . . . 9  |-  ( v  =  A  ->  (
( F `  B
)  C.  ( F `  v )  <->  ( F `  B )  C.  ( F `  A )
) )
1918imbi2d 330 . . . . . . . 8  |-  ( v  =  A  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  v )
)  <->  ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  B )  C.  ( F `  A
) ) ) )
20 inf3lem.1 . . . . . . . . . . 11  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
21 inf3lem.2 . . . . . . . . . . 11  |-  F  =  ( rec ( G ,  (/) )  |`  om )
22 inf3lem.4 . . . . . . . . . . 11  |-  B  e. 
_V
2320, 21, 22, 22inf3lem4 8528 . . . . . . . . . 10  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( B  e.  om  ->  ( F `  B
)  C.  ( F `  suc  B ) ) )
2423com12 32 . . . . . . . . 9  |-  ( B  e.  om  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  suc  B ) ) )
257, 24sylbir 225 . . . . . . . 8  |-  ( suc 
B  e.  om  ->  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  suc  B ) ) )
26 vex 3203 . . . . . . . . . . . 12  |-  u  e. 
_V
2720, 21, 26, 22inf3lem4 8528 . . . . . . . . . . 11  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( u  e.  om  ->  ( F `  u
)  C.  ( F `  suc  u ) ) )
28 psstr 3711 . . . . . . . . . . . 12  |-  ( ( ( F `  B
)  C.  ( F `  u )  /\  ( F `  u )  C.  ( F `  suc  u ) )  -> 
( F `  B
)  C.  ( F `  suc  u ) )
2928expcom 451 . . . . . . . . . . 11  |-  ( ( F `  u ) 
C.  ( F `  suc  u )  ->  (
( F `  B
)  C.  ( F `  u )  ->  ( F `  B )  C.  ( F `  suc  u ) ) )
3027, 29syl6com 37 . . . . . . . . . 10  |-  ( u  e.  om  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( F `  B )  C.  ( F `  u )  ->  ( F `  B
)  C.  ( F `  suc  u ) ) ) )
3130a2d 29 . . . . . . . . 9  |-  ( u  e.  om  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  u )
)  ->  ( (
x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  suc  u ) ) ) )
3231ad2antrr 762 . . . . . . . 8  |-  ( ( ( u  e.  om  /\ 
suc  B  e.  om )  /\  suc  B  C_  u )  ->  (
( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  u )
)  ->  ( (
x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  suc  u ) ) ) )
3310, 13, 16, 19, 25, 32findsg 7093 . . . . . . 7  |-  ( ( ( A  e.  om  /\ 
suc  B  e.  om )  /\  suc  B  C_  A )  ->  (
( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( F `  B
)  C.  ( F `  A ) ) )
3433ex 450 . . . . . 6  |-  ( ( A  e.  om  /\  suc  B  e.  om )  ->  ( suc  B  C_  A  ->  ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  B )  C.  ( F `  A
) ) ) )
357, 34sylan2b 492 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  B  C_  A  ->  ( ( x  =/=  (/)  /\  x  C_  U. x )  ->  ( F `  B )  C.  ( F `  A
) ) ) )
366, 35syld 47 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  ->  ( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  A )
) ) )
3736impancom 456 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( B  e.  om  ->  ( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  A )
) ) )
382, 37mpd 15 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( x  =/=  (/)  /\  x  C_  U. x
)  ->  ( F `  B )  C.  ( F `  A )
) )
3938com12 32 1  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  -> 
( ( A  e. 
om  /\  B  e.  A )  ->  ( F `  B )  C.  ( F `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    |` cres 5116   Ord word 5722   suc csuc 5725   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  inf3lem6  8530
  Copyright terms: Public domain W3C validator