Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrpnf Structured version   Visualization version   Unicode version

Theorem infxrpnf 39674
Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
infxrpnf  |-  ( A 
C_  RR*  -> inf ( ( A  u.  { +oo }
) ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )

Proof of Theorem infxrpnf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4  |-  ( A 
C_  RR*  ->  A  C_  RR* )
2 pnfxr 10092 . . . . . 6  |- +oo  e.  RR*
3 snssi 4339 . . . . . 6  |-  ( +oo  e.  RR*  ->  { +oo }  C_ 
RR* )
42, 3ax-mp 5 . . . . 5  |-  { +oo } 
C_  RR*
54a1i 11 . . . 4  |-  ( A 
C_  RR*  ->  { +oo }  C_ 
RR* )
61, 5unssd 3789 . . 3  |-  ( A 
C_  RR*  ->  ( A  u.  { +oo } ) 
C_  RR* )
76infxrcld 39612 . 2  |-  ( A 
C_  RR*  -> inf ( ( A  u.  { +oo }
) ,  RR* ,  <  )  e.  RR* )
8 infxrcl 12163 . 2  |-  ( A 
C_  RR*  -> inf ( A ,  RR* ,  <  )  e.  RR* )
9 ssun1 3776 . . . 4  |-  A  C_  ( A  u.  { +oo } )
109a1i 11 . . 3  |-  ( A 
C_  RR*  ->  A  C_  ( A  u.  { +oo }
) )
11 infxrss 12169 . . 3  |-  ( ( A  C_  ( A  u.  { +oo } )  /\  ( A  u.  { +oo } )  C_  RR* )  -> inf ( ( A  u.  { +oo }
) ,  RR* ,  <  )  <_ inf ( A ,  RR* ,  <  ) )
1210, 6, 11syl2anc 693 . 2  |-  ( A 
C_  RR*  -> inf ( ( A  u.  { +oo }
) ,  RR* ,  <  )  <_ inf ( A ,  RR* ,  <  ) )
13 infeq1 8382 . . . . . 6  |-  ( A  =  (/)  -> inf ( A ,  RR* ,  <  )  = inf ( (/) ,  RR* ,  <  ) )
14 xrinf0 12168 . . . . . . . 8  |- inf ( (/) , 
RR* ,  <  )  = +oo
1514, 2eqeltri 2697 . . . . . . 7  |- inf ( (/) , 
RR* ,  <  )  e. 
RR*
1615a1i 11 . . . . . 6  |-  ( A  =  (/)  -> inf ( (/) , 
RR* ,  <  )  e. 
RR* )
1713, 16eqeltrd 2701 . . . . 5  |-  ( A  =  (/)  -> inf ( A ,  RR* ,  <  )  e.  RR* )
18 xrltso 11974 . . . . . . . . 9  |-  <  Or  RR*
19 infsn 8410 . . . . . . . . 9  |-  ( (  <  Or  RR*  /\ +oo  e.  RR* )  -> inf ( { +oo } ,  RR* ,  <  )  = +oo )
2018, 2, 19mp2an 708 . . . . . . . 8  |- inf ( { +oo } ,  RR* ,  <  )  = +oo
2120eqcomi 2631 . . . . . . 7  |- +oo  = inf ( { +oo } ,  RR* ,  <  )
2221a1i 11 . . . . . 6  |-  ( A  =  (/)  -> +oo  = inf ( { +oo } ,  RR* ,  <  ) )
2313, 14syl6eq 2672 . . . . . 6  |-  ( A  =  (/)  -> inf ( A ,  RR* ,  <  )  = +oo )
24 uneq1 3760 . . . . . . . 8  |-  ( A  =  (/)  ->  ( A  u.  { +oo }
)  =  ( (/)  u. 
{ +oo } ) )
25 0un 39215 . . . . . . . . 9  |-  ( (/)  u. 
{ +oo } )  =  { +oo }
2625a1i 11 . . . . . . . 8  |-  ( A  =  (/)  ->  ( (/)  u. 
{ +oo } )  =  { +oo } )
2724, 26eqtrd 2656 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  u.  { +oo }
)  =  { +oo } )
2827infeq1d 8383 . . . . . 6  |-  ( A  =  (/)  -> inf ( ( A  u.  { +oo } ) ,  RR* ,  <  )  = inf ( { +oo } ,  RR* ,  <  )
)
2922, 23, 283eqtr4d 2666 . . . . 5  |-  ( A  =  (/)  -> inf ( A ,  RR* ,  <  )  = inf ( ( A  u.  { +oo } ) , 
RR* ,  <  ) )
3017, 29xreqled 39546 . . . 4  |-  ( A  =  (/)  -> inf ( A ,  RR* ,  <  )  <_ inf ( ( A  u.  { +oo } ) , 
RR* ,  <  ) )
3130adantl 482 . . 3  |-  ( ( A  C_  RR*  /\  A  =  (/) )  -> inf ( A ,  RR* ,  <  )  <_ inf ( ( A  u.  { +oo } ) , 
RR* ,  <  ) )
32 neqne 2802 . . . 4  |-  ( -.  A  =  (/)  ->  A  =/=  (/) )
33 nfv 1843 . . . . 5  |-  F/ x
( A  C_  RR*  /\  A  =/=  (/) )
34 nfv 1843 . . . . 5  |-  F/ y ( A  C_  RR*  /\  A  =/=  (/) )
35 simpl 473 . . . . 5  |-  ( ( A  C_  RR*  /\  A  =/=  (/) )  ->  A  C_ 
RR* )
3635, 6syl 17 . . . . 5  |-  ( ( A  C_  RR*  /\  A  =/=  (/) )  ->  ( A  u.  { +oo }
)  C_  RR* )
37 simpr 477 . . . . . . . 8  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  x  e.  A )
38 ssel2 3598 . . . . . . . . 9  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  x  e.  RR* )
39 xrleid 11983 . . . . . . . . 9  |-  ( x  e.  RR*  ->  x  <_  x )
4038, 39syl 17 . . . . . . . 8  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  x  <_  x )
41 breq1 4656 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  <_  x  <->  x  <_  x ) )
4241rspcev 3309 . . . . . . . 8  |-  ( ( x  e.  A  /\  x  <_  x )  ->  E. y  e.  A  y  <_  x )
4337, 40, 42syl2anc 693 . . . . . . 7  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  E. y  e.  A  y  <_  x )
4443ad4ant14 1293 . . . . . 6  |-  ( ( ( ( A  C_  RR* 
/\  A  =/=  (/) )  /\  x  e.  ( A  u.  { +oo } ) )  /\  x  e.  A )  ->  E. y  e.  A  y  <_  x )
45 simpll 790 . . . . . . 7  |-  ( ( ( ( A  C_  RR* 
/\  A  =/=  (/) )  /\  x  e.  ( A  u.  { +oo } ) )  /\  -.  x  e.  A )  ->  ( A  C_  RR*  /\  A  =/=  (/) ) )
46 elunnel1 3754 . . . . . . . . 9  |-  ( ( x  e.  ( A  u.  { +oo }
)  /\  -.  x  e.  A )  ->  x  e.  { +oo } )
47 elsni 4194 . . . . . . . . 9  |-  ( x  e.  { +oo }  ->  x  = +oo )
4846, 47syl 17 . . . . . . . 8  |-  ( ( x  e.  ( A  u.  { +oo }
)  /\  -.  x  e.  A )  ->  x  = +oo )
4948adantll 750 . . . . . . 7  |-  ( ( ( ( A  C_  RR* 
/\  A  =/=  (/) )  /\  x  e.  ( A  u.  { +oo } ) )  /\  -.  x  e.  A )  ->  x  = +oo )
50 simplr 792 . . . . . . . 8  |-  ( ( ( A  C_  RR*  /\  A  =/=  (/) )  /\  x  = +oo )  ->  A  =/=  (/) )
51 ssel2 3598 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR*  /\  y  e.  A )  ->  y  e.  RR* )
52 pnfge 11964 . . . . . . . . . . . . 13  |-  ( y  e.  RR*  ->  y  <_ +oo )
5351, 52syl 17 . . . . . . . . . . . 12  |-  ( ( A  C_  RR*  /\  y  e.  A )  ->  y  <_ +oo )
5453adantlr 751 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR*  /\  x  = +oo )  /\  y  e.  A )  ->  y  <_ +oo )
55 simplr 792 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR*  /\  x  = +oo )  /\  y  e.  A )  ->  x  = +oo )
5654, 55breqtrrd 4681 . . . . . . . . . 10  |-  ( ( ( A  C_  RR*  /\  x  = +oo )  /\  y  e.  A )  ->  y  <_  x )
5756ralrimiva 2966 . . . . . . . . 9  |-  ( ( A  C_  RR*  /\  x  = +oo )  ->  A. y  e.  A  y  <_  x )
5857adantlr 751 . . . . . . . 8  |-  ( ( ( A  C_  RR*  /\  A  =/=  (/) )  /\  x  = +oo )  ->  A. y  e.  A  y  <_  x )
59 r19.2z 4060 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  y  <_  x )  ->  E. y  e.  A  y  <_  x )
6050, 58, 59syl2anc 693 . . . . . . 7  |-  ( ( ( A  C_  RR*  /\  A  =/=  (/) )  /\  x  = +oo )  ->  E. y  e.  A  y  <_  x )
6145, 49, 60syl2anc 693 . . . . . 6  |-  ( ( ( ( A  C_  RR* 
/\  A  =/=  (/) )  /\  x  e.  ( A  u.  { +oo } ) )  /\  -.  x  e.  A )  ->  E. y  e.  A  y  <_  x )
6244, 61pm2.61dan 832 . . . . 5  |-  ( ( ( A  C_  RR*  /\  A  =/=  (/) )  /\  x  e.  ( A  u.  { +oo } ) )  ->  E. y  e.  A  y  <_  x )
6333, 34, 35, 36, 62infleinf2 39641 . . . 4  |-  ( ( A  C_  RR*  /\  A  =/=  (/) )  -> inf ( A ,  RR* ,  <  )  <_ inf ( ( A  u.  { +oo } ) , 
RR* ,  <  ) )
6432, 63sylan2 491 . . 3  |-  ( ( A  C_  RR*  /\  -.  A  =  (/) )  -> inf ( A ,  RR* ,  <  )  <_ inf ( ( A  u.  { +oo }
) ,  RR* ,  <  ) )
6531, 64pm2.61dan 832 . 2  |-  ( A 
C_  RR*  -> inf ( A ,  RR* ,  <  )  <_ inf ( ( A  u.  { +oo } ) , 
RR* ,  <  ) )
667, 8, 12, 65xrletrid 11986 1  |-  ( A 
C_  RR*  -> inf ( ( A  u.  { +oo }
) ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    Or wor 5034  infcinf 8347   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  infxrpnf2  39693
  Copyright terms: Public domain W3C validator