MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyss Structured version   Visualization version   Unicode version

Theorem plyss 23955
Description: The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyss  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)

Proof of Theorem plyss
Dummy variables  k 
a  n  z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . 8  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
2 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
3 ssexg 4804 . . . . . . . 8  |-  ( ( T  C_  CC  /\  CC  e.  _V )  ->  T  e.  _V )
41, 2, 3sylancl 694 . . . . . . 7  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  e.  _V )
5 snex 4908 . . . . . . 7  |-  { 0 }  e.  _V
6 unexg 6959 . . . . . . 7  |-  ( ( T  e.  _V  /\  { 0 }  e.  _V )  ->  ( T  u.  { 0 } )  e. 
_V )
74, 5, 6sylancl 694 . . . . . 6  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( T  u.  {
0 } )  e. 
_V )
8 unss1 3782 . . . . . . 7  |-  ( S 
C_  T  ->  ( S  u.  { 0 } )  C_  ( T  u.  { 0 } ) )
98adantr 481 . . . . . 6  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( S  u.  {
0 } )  C_  ( T  u.  { 0 } ) )
10 mapss 7900 . . . . . 6  |-  ( ( ( T  u.  {
0 } )  e. 
_V  /\  ( S  u.  { 0 } ) 
C_  ( T  u.  { 0 } ) )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 ) )
117, 9, 10syl2anc 693 . . . . 5  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  u.  { 0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 ) )
12 ssrexv 3667 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  C_  ( ( T  u.  { 0 } )  ^m  NN0 )  ->  ( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1311, 12syl 17 . . . 4  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1413reximdv 3016 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1514ss2abdv 3675 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  C_  { f  |  E. n  e. 
NN0  E. a  e.  ( ( T  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
16 sstr 3611 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
17 plyval 23949 . . 3  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
1816, 17syl 17 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
19 plyval 23949 . . 3  |-  ( T 
C_  CC  ->  (Poly `  T )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
2019adantl 482 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  T )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( T  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
2115, 18, 203sstr4d 3648 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
(Poly `  S )  C_  (Poly `  T )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   0cc0 9936    x. cmul 9941   NN0cn0 11292   ...cfz 12326   ^cexp 12860   sum_csu 14416  Polycply 23940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-nn 11021  df-n0 11293  df-ply 23944
This theorem is referenced by:  plyssc  23956  elqaa  24077  aacjcl  24082  aalioulem3  24089  itgoss  37733  cnsrplycl  37737
  Copyright terms: Public domain W3C validator