MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencmp Structured version   Visualization version   Unicode version

Theorem kgencmp 21348
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgencmp  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K )  =  ( (𝑘Gen `  J
)t 
K ) )

Proof of Theorem kgencmp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 kgenftop 21343 . . . 4  |-  ( J  e.  Top  ->  (𝑘Gen `  J )  e.  Top )
21adantr 481 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  (𝑘Gen `  J )  e. 
Top )
3 kgenss 21346 . . . 4  |-  ( J  e.  Top  ->  J  C_  (𝑘Gen `  J ) )
43adantr 481 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  J  C_  (𝑘Gen `  J ) )
5 ssrest 20980 . . 3  |-  ( ( (𝑘Gen `  J )  e. 
Top  /\  J  C_  (𝑘Gen `  J ) )  -> 
( Jt  K )  C_  (
(𝑘Gen `  J )t  K ) )
62, 4, 5syl2anc 693 . 2  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K ) 
C_  ( (𝑘Gen `  J
)t 
K ) )
7 cmptop 21198 . . . . . 6  |-  ( ( Jt  K )  e.  Comp  -> 
( Jt  K )  e.  Top )
87adantl 482 . . . . 5  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K )  e.  Top )
9 restrcl 20961 . . . . . 6  |-  ( ( Jt  K )  e.  Top  ->  ( J  e.  _V  /\  K  e.  _V )
)
109simprd 479 . . . . 5  |-  ( ( Jt  K )  e.  Top  ->  K  e.  _V )
118, 10syl 17 . . . 4  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  K  e.  _V )
12 restval 16087 . . . 4  |-  ( ( (𝑘Gen `  J )  e. 
Top  /\  K  e.  _V )  ->  ( (𝑘Gen `  J )t  K )  =  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) )
132, 11, 12syl2anc 693 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( (𝑘Gen `  J
)t 
K )  =  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) )
14 simpr 477 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  /\  x  e.  (𝑘Gen `  J ) )  ->  x  e.  (𝑘Gen `  J
) )
15 simplr 792 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  /\  x  e.  (𝑘Gen `  J ) )  -> 
( Jt  K )  e.  Comp )
16 kgeni 21340 . . . . . 6  |-  ( ( x  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( x  i^i  K
)  e.  ( Jt  K ) )
1714, 15, 16syl2anc 693 . . . . 5  |-  ( ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  /\  x  e.  (𝑘Gen `  J ) )  -> 
( x  i^i  K
)  e.  ( Jt  K ) )
18 eqid 2622 . . . . 5  |-  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) )  =  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) )
1917, 18fmptd 6385 . . . 4  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) : (𝑘Gen `  J
) --> ( Jt  K ) )
20 frn 6053 . . . 4  |-  ( ( x  e.  (𝑘Gen `  J
)  |->  ( x  i^i 
K ) ) : (𝑘Gen `  J ) --> ( Jt  K )  ->  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) ) 
C_  ( Jt  K ) )
2119, 20syl 17 . . 3  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ran  ( x  e.  (𝑘Gen `  J )  |->  ( x  i^i  K ) )  C_  ( Jt  K
) )
2213, 21eqsstrd 3639 . 2  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( (𝑘Gen `  J
)t 
K )  C_  ( Jt  K ) )
236, 22eqssd 3620 1  |-  ( ( J  e.  Top  /\  ( Jt  K )  e.  Comp )  ->  ( Jt  K )  =  ( (𝑘Gen `  J
)t 
K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   Compccmp 21189  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-kgen 21337
This theorem is referenced by:  kgencmp2  21349  kgenidm  21350
  Copyright terms: Public domain W3C validator