Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuplt2 Structured version   Visualization version   Unicode version

Theorem limsuplt2 39985
Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsuplt2.1  |-  ( ph  ->  B  C_  RR )
limsuplt2.2  |-  ( ph  ->  F : B --> RR* )
limsuplt2.3  |-  ( ph  ->  A  e.  RR* )
Assertion
Ref Expression
limsuplt2  |-  ( ph  ->  ( ( limsup `  F
)  <  A  <->  E. k  e.  RR  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  < 
A ) )
Distinct variable groups:    A, k    k, F
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem limsuplt2
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuplt2.1 . . 3  |-  ( ph  ->  B  C_  RR )
2 limsuplt2.2 . . 3  |-  ( ph  ->  F : B --> RR* )
3 limsuplt2.3 . . 3  |-  ( ph  ->  A  e.  RR* )
4 eqid 2622 . . . 4  |-  ( j  e.  RR  |->  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( j  e.  RR  |->  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54limsuplt 14210 . . 3  |-  ( ( B  C_  RR  /\  F : B --> RR*  /\  A  e. 
RR* )  ->  (
( limsup `  F )  <  A  <->  E. i  e.  RR  ( ( j  e.  RR  |->  sup ( ( ( F " ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  i )  <  A
) )
61, 2, 3, 5syl3anc 1326 . 2  |-  ( ph  ->  ( ( limsup `  F
)  <  A  <->  E. i  e.  RR  ( ( j  e.  RR  |->  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  i )  <  A ) )
7 oveq1 6657 . . . . . . . 8  |-  ( j  =  i  ->  (
j [,) +oo )  =  ( i [,) +oo ) )
87imaeq2d 5466 . . . . . . 7  |-  ( j  =  i  ->  ( F " ( j [,) +oo ) )  =  ( F " ( i [,) +oo ) ) )
98ineq1d 3813 . . . . . 6  |-  ( j  =  i  ->  (
( F " (
j [,) +oo )
)  i^i  RR* )  =  ( ( F "
( i [,) +oo ) )  i^i  RR* ) )
109supeq1d 8352 . . . . 5  |-  ( j  =  i  ->  sup ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
11 simpr 477 . . . . 5  |-  ( (
ph  /\  i  e.  RR )  ->  i  e.  RR )
12 xrltso 11974 . . . . . . 7  |-  <  Or  RR*
1312supex 8369 . . . . . 6  |-  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
1413a1i 11 . . . . 5  |-  ( (
ph  /\  i  e.  RR )  ->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
154, 10, 11, 14fvmptd3 39447 . . . 4  |-  ( (
ph  /\  i  e.  RR )  ->  ( ( j  e.  RR  |->  sup ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  i )  =  sup ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
1615breq1d 4663 . . 3  |-  ( (
ph  /\  i  e.  RR )  ->  ( ( ( j  e.  RR  |->  sup ( ( ( F
" ( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  i )  <  A  <->  sup (
( ( F "
( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  A ) )
1716rexbidva 3049 . 2  |-  ( ph  ->  ( E. i  e.  RR  ( ( j  e.  RR  |->  sup (
( ( F "
( j [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  i )  <  A  <->  E. i  e.  RR  sup ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  < 
A ) )
18 oveq1 6657 . . . . . . . 8  |-  ( i  =  k  ->  (
i [,) +oo )  =  ( k [,) +oo ) )
1918imaeq2d 5466 . . . . . . 7  |-  ( i  =  k  ->  ( F " ( i [,) +oo ) )  =  ( F " ( k [,) +oo ) ) )
2019ineq1d 3813 . . . . . 6  |-  ( i  =  k  ->  (
( F " (
i [,) +oo )
)  i^i  RR* )  =  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )
2120supeq1d 8352 . . . . 5  |-  ( i  =  k  ->  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
2221breq1d 4663 . . . 4  |-  ( i  =  k  ->  ( sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  A  <->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  A ) )
2322cbvrexv 3172 . . 3  |-  ( E. i  e.  RR  sup ( ( ( F
" ( i [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  A  <->  E. k  e.  RR  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  < 
A )
2423a1i 11 . 2  |-  ( ph  ->  ( E. i  e.  RR  sup ( ( ( F " (
i [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  < 
A  <->  E. k  e.  RR  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  A ) )
256, 17, 243bitrd 294 1  |-  ( ph  ->  ( ( limsup `  F
)  <  A  <->  E. k  e.  RR  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  )  < 
A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,)cico 12177   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-limsup 14202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator