| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulge0b | Structured version Visualization version Unicode version | ||
| Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.) |
| Ref | Expression |
|---|---|
| mulge0b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 509 |
. . . . 5
| |
| 2 | 0re 10040 |
. . . . . . . . . 10
| |
| 3 | ltnle 10117 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | mpan 706 |
. . . . . . . . 9
|
| 5 | 4 | adantr 481 |
. . . . . . . 8
|
| 6 | ltnle 10117 |
. . . . . . . . . 10
| |
| 7 | 2, 6 | mpan 706 |
. . . . . . . . 9
|
| 8 | 7 | adantl 482 |
. . . . . . . 8
|
| 9 | 5, 8 | orbi12d 746 |
. . . . . . 7
|
| 10 | 9 | adantr 481 |
. . . . . 6
|
| 11 | ltle 10126 |
. . . . . . . . . . . 12
| |
| 12 | 2, 11 | mpan 706 |
. . . . . . . . . . 11
|
| 13 | 12 | imp 445 |
. . . . . . . . . 10
|
| 14 | 13 | ad2ant2rl 785 |
. . . . . . . . 9
|
| 15 | remulcl 10021 |
. . . . . . . . . . . 12
| |
| 16 | 15 | adantr 481 |
. . . . . . . . . . 11
|
| 17 | simprl 794 |
. . . . . . . . . . 11
| |
| 18 | simpll 790 |
. . . . . . . . . . 11
| |
| 19 | simprr 796 |
. . . . . . . . . . 11
| |
| 20 | divge0 10892 |
. . . . . . . . . . 11
| |
| 21 | 16, 17, 18, 19, 20 | syl22anc 1327 |
. . . . . . . . . 10
|
| 22 | recn 10026 |
. . . . . . . . . . . 12
| |
| 23 | 22 | ad2antlr 763 |
. . . . . . . . . . 11
|
| 24 | recn 10026 |
. . . . . . . . . . . 12
| |
| 25 | 24 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 26 | gt0ne0 10493 |
. . . . . . . . . . . 12
| |
| 27 | 26 | ad2ant2rl 785 |
. . . . . . . . . . 11
|
| 28 | 23, 25, 27 | divcan3d 10806 |
. . . . . . . . . 10
|
| 29 | 21, 28 | breqtrd 4679 |
. . . . . . . . 9
|
| 30 | 14, 29 | jca 554 |
. . . . . . . 8
|
| 31 | 30 | expr 643 |
. . . . . . 7
|
| 32 | 15 | adantr 481 |
. . . . . . . . . . 11
|
| 33 | simprl 794 |
. . . . . . . . . . 11
| |
| 34 | simplr 792 |
. . . . . . . . . . 11
| |
| 35 | simprr 796 |
. . . . . . . . . . 11
| |
| 36 | divge0 10892 |
. . . . . . . . . . 11
| |
| 37 | 32, 33, 34, 35, 36 | syl22anc 1327 |
. . . . . . . . . 10
|
| 38 | 24 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 39 | 22 | ad2antlr 763 |
. . . . . . . . . . 11
|
| 40 | gt0ne0 10493 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ad2ant2l 782 |
. . . . . . . . . . 11
|
| 42 | 38, 39, 41 | divcan4d 10807 |
. . . . . . . . . 10
|
| 43 | 37, 42 | breqtrd 4679 |
. . . . . . . . 9
|
| 44 | ltle 10126 |
. . . . . . . . . . . 12
| |
| 45 | 2, 44 | mpan 706 |
. . . . . . . . . . 11
|
| 46 | 45 | imp 445 |
. . . . . . . . . 10
|
| 47 | 46 | ad2ant2l 782 |
. . . . . . . . 9
|
| 48 | 43, 47 | jca 554 |
. . . . . . . 8
|
| 49 | 48 | expr 643 |
. . . . . . 7
|
| 50 | 31, 49 | jaod 395 |
. . . . . 6
|
| 51 | 10, 50 | sylbird 250 |
. . . . 5
|
| 52 | 1, 51 | syl5bi 232 |
. . . 4
|
| 53 | 52 | orrd 393 |
. . 3
|
| 54 | 53 | ex 450 |
. 2
|
| 55 | le0neg1 10536 |
. . . . 5
| |
| 56 | le0neg1 10536 |
. . . . 5
| |
| 57 | 55, 56 | bi2anan9 917 |
. . . 4
|
| 58 | renegcl 10344 |
. . . . . 6
| |
| 59 | renegcl 10344 |
. . . . . 6
| |
| 60 | mulge0 10546 |
. . . . . . . 8
| |
| 61 | 60 | an4s 869 |
. . . . . . 7
|
| 62 | 61 | ex 450 |
. . . . . 6
|
| 63 | 58, 59, 62 | syl2an 494 |
. . . . 5
|
| 64 | mul2neg 10469 |
. . . . . . 7
| |
| 65 | 24, 22, 64 | syl2an 494 |
. . . . . 6
|
| 66 | 65 | breq2d 4665 |
. . . . 5
|
| 67 | 63, 66 | sylibd 229 |
. . . 4
|
| 68 | 57, 67 | sylbid 230 |
. . 3
|
| 69 | mulge0 10546 |
. . . . 5
| |
| 70 | 69 | an4s 869 |
. . . 4
|
| 71 | 70 | ex 450 |
. . 3
|
| 72 | 68, 71 | jaod 395 |
. 2
|
| 73 | 54, 72 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 |
| This theorem is referenced by: mulle0b 10894 |
| Copyright terms: Public domain | W3C validator |