MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0b Structured version   Visualization version   Unicode version

Theorem mulge0b 10893
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulge0b  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  ( A  x.  B )  <->  ( ( A  <_  0  /\  B  <_  0 )  \/  ( 0  <_  A  /\  0  <_  B
) ) ) )

Proof of Theorem mulge0b
StepHypRef Expression
1 ianor 509 . . . . 5  |-  ( -.  ( A  <_  0  /\  B  <_  0 )  <-> 
( -.  A  <_ 
0  \/  -.  B  <_  0 ) )
2 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
3 ltnle 10117 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  -.  A  <_  0 ) )
42, 3mpan 706 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  A  <->  -.  A  <_  0 ) )
54adantr 481 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  <->  -.  A  <_  0 ) )
6 ltnle 10117 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  -.  B  <_  0 ) )
72, 6mpan 706 . . . . . . . . 9  |-  ( B  e.  RR  ->  (
0  <  B  <->  -.  B  <_  0 ) )
87adantl 482 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  -.  B  <_  0 ) )
95, 8orbi12d 746 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  \/  0  < 
B )  <->  ( -.  A  <_  0  \/  -.  B  <_  0 ) ) )
109adantr 481 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( (
0  <  A  \/  0  <  B )  <->  ( -.  A  <_  0  \/  -.  B  <_  0 ) ) )
11 ltle 10126 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
122, 11mpan 706 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
1312imp 445 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  A )
1413ad2ant2rl 785 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  0  <_  A )
15 remulcl 10021 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
1615adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  ( A  x.  B )  e.  RR )
17 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  0  <_  ( A  x.  B
) )
18 simpll 790 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  A  e.  RR )
19 simprr 796 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  0  <  A )
20 divge0 10892 . . . . . . . . . . 11  |-  ( ( ( ( A  x.  B )  e.  RR  /\  0  <_  ( A  x.  B ) )  /\  ( A  e.  RR  /\  0  <  A ) )  ->  0  <_  ( ( A  x.  B
)  /  A ) )
2116, 17, 18, 19, 20syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  0  <_  ( ( A  x.  B )  /  A
) )
22 recn 10026 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  B  e.  CC )
2322ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  B  e.  CC )
24 recn 10026 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  A  e.  CC )
2524ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  A  e.  CC )
26 gt0ne0 10493 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
2726ad2ant2rl 785 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  A  =/=  0 )
2823, 25, 27divcan3d 10806 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  (
( A  x.  B
)  /  A )  =  B )
2921, 28breqtrd 4679 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  0  <_  B )
3014, 29jca 554 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  A ) )  ->  (
0  <_  A  /\  0  <_  B ) )
3130expr 643 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( 0  <  A  ->  (
0  <_  A  /\  0  <_  B ) ) )
3215adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  ( A  x.  B )  e.  RR )
33 simprl 794 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  0  <_  ( A  x.  B
) )
34 simplr 792 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  B  e.  RR )
35 simprr 796 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  0  <  B )
36 divge0 10892 . . . . . . . . . . 11  |-  ( ( ( ( A  x.  B )  e.  RR  /\  0  <_  ( A  x.  B ) )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( ( A  x.  B
)  /  B ) )
3732, 33, 34, 35, 36syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  0  <_  ( ( A  x.  B )  /  B
) )
3824ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  A  e.  CC )
3922ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  B  e.  CC )
40 gt0ne0 10493 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
4140ad2ant2l 782 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  B  =/=  0 )
4238, 39, 41divcan4d 10807 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  (
( A  x.  B
)  /  B )  =  A )
4337, 42breqtrd 4679 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  0  <_  A )
44 ltle 10126 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  ->  0  <_  B )
)
452, 44mpan 706 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  (
0  <  B  ->  0  <_  B ) )
4645imp 445 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
0  <_  B )
4746ad2ant2l 782 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  0  <_  B )
4843, 47jca 554 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_ 
( A  x.  B
)  /\  0  <  B ) )  ->  (
0  <_  A  /\  0  <_  B ) )
4948expr 643 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( 0  <  B  ->  (
0  <_  A  /\  0  <_  B ) ) )
5031, 49jaod 395 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( (
0  <  A  \/  0  <  B )  -> 
( 0  <_  A  /\  0  <_  B ) ) )
5110, 50sylbird 250 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( ( -.  A  <_  0  \/ 
-.  B  <_  0
)  ->  ( 0  <_  A  /\  0  <_  B ) ) )
521, 51syl5bi 232 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( -.  ( A  <_  0  /\  B  <_  0 )  ->  ( 0  <_  A  /\  0  <_  B
) ) )
5352orrd 393 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <_  ( A  x.  B )
)  ->  ( ( A  <_  0  /\  B  <_  0 )  \/  (
0  <_  A  /\  0  <_  B ) ) )
5453ex 450 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  ( A  x.  B )  ->  ( ( A  <_ 
0  /\  B  <_  0 )  \/  ( 0  <_  A  /\  0  <_  B ) ) ) )
55 le0neg1 10536 . . . . 5  |-  ( A  e.  RR  ->  ( A  <_  0  <->  0  <_  -u A ) )
56 le0neg1 10536 . . . . 5  |-  ( B  e.  RR  ->  ( B  <_  0  <->  0  <_  -u B ) )
5755, 56bi2anan9 917 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_ 
0  /\  B  <_  0 )  <->  ( 0  <_  -u A  /\  0  <_  -u B ) ) )
58 renegcl 10344 . . . . . 6  |-  ( A  e.  RR  ->  -u A  e.  RR )
59 renegcl 10344 . . . . . 6  |-  ( B  e.  RR  ->  -u B  e.  RR )
60 mulge0 10546 . . . . . . . 8  |-  ( ( ( -u A  e.  RR  /\  0  <_  -u A )  /\  ( -u B  e.  RR  /\  0  <_  -u B ) )  ->  0  <_  ( -u A  x.  -u B
) )
6160an4s 869 . . . . . . 7  |-  ( ( ( -u A  e.  RR  /\  -u B  e.  RR )  /\  (
0  <_  -u A  /\  0  <_  -u B ) )  ->  0  <_  ( -u A  x.  -u B
) )
6261ex 450 . . . . . 6  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  ( ( 0  <_  -u A  /\  0  <_ 
-u B )  -> 
0  <_  ( -u A  x.  -u B ) ) )
6358, 59, 62syl2an 494 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  -u A  /\  0  <_  -u B )  ->  0  <_  ( -u A  x.  -u B ) ) )
64 mul2neg 10469 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
6524, 22, 64syl2an 494 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
6665breq2d 4665 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  ( -u A  x.  -u B
)  <->  0  <_  ( A  x.  B )
) )
6763, 66sylibd 229 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  -u A  /\  0  <_  -u B )  ->  0  <_  ( A  x.  B
) ) )
6857, 67sylbid 230 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_ 
0  /\  B  <_  0 )  ->  0  <_  ( A  x.  B ) ) )
69 mulge0 10546 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
7069an4s 869 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  x.  B
) )
7170ex 450 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  0  <_  B
)  ->  0  <_  ( A  x.  B ) ) )
7268, 71jaod 395 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  <_  0  /\  B  <_  0 )  \/  (
0  <_  A  /\  0  <_  B ) )  ->  0  <_  ( A  x.  B )
) )
7354, 72impbid 202 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  ( A  x.  B )  <->  ( ( A  <_  0  /\  B  <_  0 )  \/  ( 0  <_  A  /\  0  <_  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075   -ucneg 10267    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  mulle0b  10894
  Copyright terms: Public domain W3C validator