MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulre Structured version   Visualization version   Unicode version

Theorem mulre 13861
Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
mulre  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e.  RR ) )

Proof of Theorem mulre
StepHypRef Expression
1 rereb 13860 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
213ad2ant1 1082 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
3 recl 13850 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 10068 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
543ad2ant1 1082 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
Re `  A )  e.  CC )
6 simp1 1061 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  A  e.  CC )
7 recn 10026 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
87anim1i 592 . . . 4  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( B  e.  CC  /\  B  =/=  0 ) )
983adant1 1079 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( B  e.  CC  /\  B  =/=  0 ) )
10 mulcan 10664 . . 3  |-  ( ( ( Re `  A
)  e.  CC  /\  A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( Re `  A )  =  A ) )
115, 6, 9, 10syl3anc 1326 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
( B  x.  (
Re `  A )
)  =  ( B  x.  A )  <->  ( Re `  A )  =  A ) )
127adantr 481 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  B  e.  CC )
134adantl 482 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  A
)  e.  CC )
14 ax-icn 9995 . . . . . . . . . . . 12  |-  _i  e.  CC
15 imcl 13851 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1615recnd 10068 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
17 mulcl 10020 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
1814, 16, 17sylancr 695 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
1918adantl 482 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
2012, 13, 19adddid 10064 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( B  x.  ( Re
`  A ) )  +  ( B  x.  ( _i  x.  (
Im `  A )
) ) ) )
21 replim 13856 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2221adantl 482 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
2322oveq2d 6666 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  =  ( B  x.  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
24 mul12 10202 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  B  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
_i  x.  ( B  x.  ( Im `  A
) ) )  =  ( B  x.  (
_i  x.  ( Im `  A ) ) ) )
2514, 24mp3an1 1411 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  ( B  x.  ( Im `  A ) ) )  =  ( B  x.  ( _i  x.  (
Im `  A )
) ) )
267, 16, 25syl2an 494 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( _i  x.  ( B  x.  ( Im `  A ) ) )  =  ( B  x.  ( _i  x.  (
Im `  A )
) ) )
2726oveq2d 6666 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) )  =  ( ( B  x.  ( Re `  A ) )  +  ( B  x.  ( _i  x.  ( Im `  A ) ) ) ) )
2820, 23, 273eqtr4d 2666 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  =  ( ( B  x.  ( Re
`  A ) )  +  ( _i  x.  ( B  x.  (
Im `  A )
) ) ) )
2928fveq2d 6195 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  ( B  x.  A )
)  =  ( Re
`  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) ) )
30 remulcl 10021 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( B  x.  (
Re `  A )
)  e.  RR )
313, 30sylan2 491 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Re `  A )
)  e.  RR )
32 remulcl 10021 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( Im `  A )  e.  RR )  -> 
( B  x.  (
Im `  A )
)  e.  RR )
3315, 32sylan2 491 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Im `  A )
)  e.  RR )
34 crre 13854 . . . . . . . 8  |-  ( ( ( B  x.  (
Re `  A )
)  e.  RR  /\  ( B  x.  (
Im `  A )
)  e.  RR )  ->  ( Re `  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) )  =  ( B  x.  ( Re `  A ) ) )
3531, 33, 34syl2anc 693 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  (
( B  x.  (
Re `  A )
)  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) )  =  ( B  x.  ( Re `  A ) ) )
3629, 35eqtr2d 2657 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Re `  A )
)  =  ( Re
`  ( B  x.  A ) ) )
3736eqeq1d 2624 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( Re `  ( B  x.  A
) )  =  ( B  x.  A ) ) )
38 mulcl 10020 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  x.  A
)  e.  CC )
397, 38sylan 488 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  e.  CC )
40 rereb 13860 . . . . . 6  |-  ( ( B  x.  A )  e.  CC  ->  (
( B  x.  A
)  e.  RR  <->  ( Re `  ( B  x.  A
) )  =  ( B  x.  A ) ) )
4139, 40syl 17 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  A )  e.  RR  <->  ( Re `  ( B  x.  A ) )  =  ( B  x.  A ) ) )
4237, 41bitr4d 271 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
4342ancoms 469 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
44433adant3 1081 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
( B  x.  (
Re `  A )
)  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
452, 11, 443bitr2d 296 1  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941   Recre 13837   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  sineq0  24273  sineq0ALT  39173
  Copyright terms: Public domain W3C validator