MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcnlem Structured version   Visualization version   Unicode version

Theorem smcnlem 27552
Description: Lemma for smcn 27553. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c  |-  C  =  ( IndMet `  U )
smcn.j  |-  J  =  ( MetOpen `  C )
smcn.s  |-  S  =  ( .sOLD `  U )
smcn.k  |-  K  =  ( TopOpen ` fld )
smcn.x  |-  X  =  ( BaseSet `  U )
smcn.n  |-  N  =  ( normCV `  U )
smcn.u  |-  U  e.  NrmCVec
smcn.t  |-  T  =  ( 1  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
Assertion
Ref Expression
smcnlem  |-  S  e.  ( ( K  tX  J )  Cn  J
)
Distinct variable groups:    x, r,
y, C    J, r, x, y    U, r, x, y    K, r, x, y    S, r, x, y    X, r, x, y
Allowed substitution hints:    T( x, y, r)    N( x, y, r)

Proof of Theorem smcnlem
Dummy variables  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.u . . 3  |-  U  e.  NrmCVec
2 smcn.x . . . 4  |-  X  =  ( BaseSet `  U )
3 smcn.s . . . 4  |-  S  =  ( .sOLD `  U )
42, 3nvsf 27474 . . 3  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  X ) --> X )
51, 4ax-mp 5 . 2  |-  S :
( CC  X.  X
) --> X
6 smcn.t . . . . . 6  |-  T  =  ( 1  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
7 1rp 11836 . . . . . . . 8  |-  1  e.  RR+
8 simpr 477 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  y  e.  X )
9 smcn.n . . . . . . . . . . . . 13  |-  N  =  ( normCV `  U )
102, 9nvcl 27516 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
111, 8, 10sylancr 695 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( N `  y
)  e.  RR )
12 abscl 14018 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
1312adantr 481 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( abs `  x
)  e.  RR )
1411, 13readdcld 10069 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( ( N `  y )  +  ( abs `  x ) )  e.  RR )
152, 9nvge0 27528 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  0  <_  ( N `  y
) )
161, 8, 15sylancr 695 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  0  <_  ( N `  y ) )
17 absge0 14027 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
1817adantr 481 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  0  <_  ( abs `  x ) )
1911, 13, 16, 18addge0d 10603 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  0  <_  ( ( N `  y )  +  ( abs `  x
) ) )
2014, 19ge0p1rpd 11902 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  e.  RR+ )
21 rpdivcl 11856 . . . . . . . . 9  |-  ( ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  e.  RR+  /\  r  e.  RR+ )  ->  (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r )  e.  RR+ )
2220, 21sylan 488 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  RR+ )
23 rpaddcl 11854 . . . . . . . 8  |-  ( ( 1  e.  RR+  /\  (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r )  e.  RR+ )  ->  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) )  e.  RR+ )
247, 22, 23sylancr 695 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  e.  RR+ )
2524rpreccld 11882 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )  e.  RR+ )
266, 25syl5eqel 2705 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  T  e.  RR+ )
27 smcn.c . . . . . . . . . . . 12  |-  C  =  ( IndMet `  U )
282, 27imsmet 27546 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  X ) )
291, 28ax-mp 5 . . . . . . . . . 10  |-  C  e.  ( Met `  X
)
3029a1i 11 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  C  e.  ( Met `  X ) )
311a1i 11 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  U  e.  NrmCVec )
32 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  x  e.  CC )
33 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  y  e.  X
)
342, 3nvscl 27481 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  CC  /\  y  e.  X )  ->  (
x S y )  e.  X )
3531, 32, 33, 34syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x S y )  e.  X
)
36 simprll 802 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  z  e.  CC )
37 simprlr 803 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  w  e.  X
)
382, 3nvscl 27481 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  z  e.  CC  /\  w  e.  X )  ->  (
z S w )  e.  X )
3931, 36, 37, 38syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z S w )  e.  X
)
40 metcl 22137 . . . . . . . . 9  |-  ( ( C  e.  ( Met `  X )  /\  (
x S y )  e.  X  /\  (
z S w )  e.  X )  -> 
( ( x S y ) C ( z S w ) )  e.  RR )
4130, 35, 39, 40syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S w ) )  e.  RR )
422, 3nvscl 27481 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  z  e.  CC  /\  y  e.  X )  ->  (
z S y )  e.  X )
4331, 36, 33, 42syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z S y )  e.  X
)
44 metcl 22137 . . . . . . . . . 10  |-  ( ( C  e.  ( Met `  X )  /\  (
x S y )  e.  X  /\  (
z S y )  e.  X )  -> 
( ( x S y ) C ( z S y ) )  e.  RR )
4530, 35, 43, 44syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S y ) )  e.  RR )
46 metcl 22137 . . . . . . . . . 10  |-  ( ( C  e.  ( Met `  X )  /\  (
z S y )  e.  X  /\  (
z S w )  e.  X )  -> 
( ( z S y ) C ( z S w ) )  e.  RR )
4730, 43, 39, 46syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( z S y ) C ( z S w ) )  e.  RR )
4845, 47readdcld 10069 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  e.  RR )
49 rpre 11839 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e.  RR )
5049ad2antlr 763 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  r  e.  RR )
51 mettri 22157 . . . . . . . . 9  |-  ( ( C  e.  ( Met `  X )  /\  (
( x S y )  e.  X  /\  ( z S w )  e.  X  /\  ( z S y )  e.  X ) )  ->  ( (
x S y ) C ( z S w ) )  <_ 
( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) ) )
5230, 35, 39, 43, 51syl13anc 1328 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S w ) )  <_  (
( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) ) )
531, 33, 10sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  y )  e.  RR )
5432abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  x
)  e.  RR )
5553, 54readdcld 10069 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( N `
 y )  +  ( abs `  x
) )  e.  RR )
56 peano2re 10209 . . . . . . . . . . 11  |-  ( ( ( N `  y
)  +  ( abs `  x ) )  e.  RR  ->  ( (
( N `  y
)  +  ( abs `  x ) )  +  1 )  e.  RR )
5755, 56syl 17 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  e.  RR )
5826adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  e.  RR+ )
5958rpred 11872 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  e.  RR )
6057, 59remulcld 10070 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  e.  RR )
6132, 36subcld 10392 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  -  z )  e.  CC )
6261abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  -  z ) )  e.  RR )
6362, 53remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
)  e.  RR )
6436abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  z
)  e.  RR )
65 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( -v
`  U )  =  ( -v `  U
)
662, 65nvmcl 27501 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  y  e.  X  /\  w  e.  X )  ->  (
y ( -v `  U ) w )  e.  X )
6731, 33, 37, 66syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( y ( -v `  U ) w )  e.  X
)
682, 9nvcl 27516 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
y ( -v `  U ) w )  e.  X )  -> 
( N `  (
y ( -v `  U ) w ) )  e.  RR )
691, 67, 68sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( y ( -v
`  U ) w ) )  e.  RR )
7064, 69remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) )  e.  RR )
7153, 59remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( N `
 y )  x.  T )  e.  RR )
72 peano2re 10209 . . . . . . . . . . . . 13  |-  ( ( abs `  x )  e.  RR  ->  (
( abs `  x
)  +  1 )  e.  RR )
7354, 72syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  1 )  e.  RR )
7473, 59remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( abs `  x )  +  1 )  x.  T )  e.  RR )
751, 33, 15sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  0  <_  ( N `  y )
)
7632, 36abssubd 14192 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  -  z ) )  =  ( abs `  ( z  -  x
) ) )
7736, 32subcld 10392 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z  -  x )  e.  CC )
7877abscld 14175 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  e.  RR )
79 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
8079cnmetdval 22574 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x ( abs 
o.  -  ) z
)  =  ( abs `  ( x  -  z
) ) )
8132, 36, 80syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( x  -  z ) ) )
8281, 76eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( z  -  x ) ) )
83 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x ( abs  o.  -  )
z )  <  T
)
8482, 83eqbrtrrd 4677 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  <  T )
8578, 59, 84ltled 10185 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  <_  T )
8676, 85eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  -  z ) )  <_  T )
8762, 59, 53, 75, 86lemul1ad 10963 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
)  <_  ( T  x.  ( N `  y
) ) )
8858rpcnd 11874 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  e.  CC )
8953recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  y )  e.  CC )
9088, 89mulcomd 10061 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( T  x.  ( N `  y ) )  =  ( ( N `  y )  x.  T ) )
9187, 90breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
)  <_  ( ( N `  y )  x.  T ) )
9236absge0d 14183 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  0  <_  ( abs `  z ) )
932, 9nvge0 27528 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
y ( -v `  U ) w )  e.  X )  -> 
0  <_  ( N `  ( y ( -v
`  U ) w ) ) )
941, 67, 93sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  0  <_  ( N `  ( y
( -v `  U
) w ) ) )
9554, 78readdcld 10069 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  ( abs `  ( z  -  x ) ) )  e.  RR )
9632, 36pncan3d 10395 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  ( z  -  x
) )  =  z )
9796fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  +  ( z  -  x ) ) )  =  ( abs `  z ) )
9832, 77abstrid 14195 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  +  ( z  -  x ) ) )  <_  ( ( abs `  x )  +  ( abs `  (
z  -  x ) ) ) )
9997, 98eqbrtrrd 4677 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  z
)  <_  ( ( abs `  x )  +  ( abs `  (
z  -  x ) ) ) )
100 1red 10055 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  1  e.  RR )
101 1re 10039 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
10222adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  RR+ )
103 ltaddrp 11867 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r )  e.  RR+ )  ->  1  <  ( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )
104101, 102, 103sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  1  <  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
10524adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  e.  RR+ )
106105recgt1d 11886 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  < 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) )  <->  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )  <  1
) )
107104, 106mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )  <  1
)
1086, 107syl5eqbr 4688 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  <  1
)
10959, 100, 108ltled 10185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  <_  1
)
11078, 59, 100, 85, 109letrd 10194 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  <_  1 )
11178, 100, 54, 110leadd2dd 10642 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  ( abs `  ( z  -  x ) ) )  <_  ( ( abs `  x )  +  1 ) )
11264, 95, 73, 99, 111letrd 10194 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  z
)  <_  ( ( abs `  x )  +  1 ) )
1132, 65, 9, 27imsdval 27541 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  y  e.  X  /\  w  e.  X )  ->  (
y C w )  =  ( N `  ( y ( -v
`  U ) w ) ) )
11431, 33, 37, 113syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( y C w )  =  ( N `  ( y ( -v `  U
) w ) ) )
115 simprrr 805 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( y C w )  <  T
)
116114, 115eqbrtrrd 4677 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( y ( -v
`  U ) w ) )  <  T
)
11769, 59, 116ltled 10185 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( y ( -v
`  U ) w ) )  <_  T
)
11864, 73, 69, 59, 92, 94, 112, 117lemul12ad 10966 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) )  <_  ( (
( abs `  x
)  +  1 )  x.  T ) )
11963, 70, 71, 74, 91, 118le2addd 10646 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( abs `  ( x  -  z ) )  x.  ( N `  y ) )  +  ( ( abs `  z
)  x.  ( N `
 ( y ( -v `  U ) w ) ) ) )  <_  ( (
( N `  y
)  x.  T )  +  ( ( ( abs `  x )  +  1 )  x.  T ) ) )
120 eqid 2622 . . . . . . . . . . . . . 14  |-  ( +v
`  U )  =  ( +v `  U
)
1212, 120, 3, 9, 27imsdval2 27542 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
x S y )  e.  X  /\  (
z S y )  e.  X )  -> 
( ( x S y ) C ( z S y ) )  =  ( N `
 ( ( x S y ) ( +v `  U ) ( -u 1 S ( z S y ) ) ) ) )
12231, 35, 43, 121syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S y ) )  =  ( N `  ( ( x S y ) ( +v `  U
) ( -u 1 S ( z S y ) ) ) ) )
123 neg1cn 11124 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  CC
124 mulcl 10020 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  e.  CC  /\  z  e.  CC )  ->  ( -u 1  x.  z )  e.  CC )
125123, 36, 124sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( -u 1  x.  z )  e.  CC )
1262, 120, 3nvdir 27486 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  CC  /\  ( -u 1  x.  z
)  e.  CC  /\  y  e.  X )
)  ->  ( (
x  +  ( -u
1  x.  z ) ) S y )  =  ( ( x S y ) ( +v `  U ) ( ( -u 1  x.  z ) S y ) ) )
12731, 32, 125, 33, 126syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x  +  ( -u 1  x.  z ) ) S y )  =  ( ( x S y ) ( +v `  U ) ( (
-u 1  x.  z
) S y ) ) )
12836mulm1d 10482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( -u 1  x.  z )  =  -u z )
129128oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  ( -u 1  x.  z
) )  =  ( x  +  -u z
) )
13032, 36negsubd 10398 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  -u z )  =  ( x  -  z ) )
131129, 130eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  ( -u 1  x.  z
) )  =  ( x  -  z ) )
132131oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x  +  ( -u 1  x.  z ) ) S y )  =  ( ( x  -  z
) S y ) )
133123a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  -u 1  e.  CC )
1342, 3nvsass 27483 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  z  e.  CC  /\  y  e.  X ) )  -> 
( ( -u 1  x.  z ) S y )  =  ( -u
1 S ( z S y ) ) )
13531, 133, 36, 33, 134syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( -u
1  x.  z ) S y )  =  ( -u 1 S ( z S y ) ) )
136135oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) ( +v `  U ) ( ( -u 1  x.  z ) S y ) )  =  ( ( x S y ) ( +v `  U ) ( -u
1 S ( z S y ) ) ) )
137127, 132, 1363eqtr3d 2664 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x  -  z ) S y )  =  ( ( x S y ) ( +v `  U ) ( -u
1 S ( z S y ) ) ) )
138137fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( ( x  -  z ) S y ) )  =  ( N `  ( ( x S y ) ( +v `  U
) ( -u 1 S ( z S y ) ) ) ) )
1392, 3, 9nvs 27518 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
x  -  z )  e.  CC  /\  y  e.  X )  ->  ( N `  ( (
x  -  z ) S y ) )  =  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
) )
14031, 61, 33, 139syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( ( x  -  z ) S y ) )  =  ( ( abs `  (
x  -  z ) )  x.  ( N `
 y ) ) )
141122, 138, 1403eqtr2d 2662 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S y ) )  =  ( ( abs `  (
x  -  z ) )  x.  ( N `
 y ) ) )
1422, 65, 9, 27imsdval 27541 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
z S y )  e.  X  /\  (
z S w )  e.  X )  -> 
( ( z S y ) C ( z S w ) )  =  ( N `
 ( ( z S y ) ( -v `  U ) ( z S w ) ) ) )
14331, 43, 39, 142syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( z S y ) C ( z S w ) )  =  ( N `  ( ( z S y ) ( -v `  U
) ( z S w ) ) ) )
1442, 65, 3nvmdi 27503 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  (
z  e.  CC  /\  y  e.  X  /\  w  e.  X )
)  ->  ( z S ( y ( -v `  U ) w ) )  =  ( ( z S y ) ( -v
`  U ) ( z S w ) ) )
14531, 36, 33, 37, 144syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z S ( y ( -v
`  U ) w ) )  =  ( ( z S y ) ( -v `  U ) ( z S w ) ) )
146145fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( z S ( y ( -v `  U ) w ) ) )  =  ( N `  ( ( z S y ) ( -v `  U
) ( z S w ) ) ) )
1472, 3, 9nvs 27518 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  z  e.  CC  /\  ( y ( -v `  U
) w )  e.  X )  ->  ( N `  ( z S ( y ( -v `  U ) w ) ) )  =  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) ) )
14831, 36, 67, 147syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( z S ( y ( -v `  U ) w ) ) )  =  ( ( abs `  z
)  x.  ( N `
 ( y ( -v `  U ) w ) ) ) )
149143, 146, 1483eqtr2d 2662 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( z S y ) C ( z S w ) )  =  ( ( abs `  z
)  x.  ( N `
 ( y ( -v `  U ) w ) ) ) )
150141, 149oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  =  ( ( ( abs `  (
x  -  z ) )  x.  ( N `
 y ) )  +  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) ) ) )
15154recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  x
)  e.  CC )
152 1cnd 10056 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  1  e.  CC )
15389, 151, 152addassd 10062 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  =  ( ( N `  y )  +  ( ( abs `  x )  +  1 ) ) )
154153oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  =  ( ( ( N `  y
)  +  ( ( abs `  x )  +  1 ) )  x.  T ) )
15573recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  1 )  e.  CC )
15689, 155, 88adddird 10065 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( ( abs `  x )  +  1 ) )  x.  T
)  =  ( ( ( N `  y
)  x.  T )  +  ( ( ( abs `  x )  +  1 )  x.  T ) ) )
157154, 156eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  =  ( ( ( N `  y
)  x.  T )  +  ( ( ( abs `  x )  +  1 )  x.  T ) ) )
158119, 150, 1573brtr4d 4685 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  <_  (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  x.  T ) )
15957recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  e.  CC )
160105rpcnd 11874 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  e.  CC )
161105rpne0d 11877 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  =/=  0 )
162159, 160, 161divrecd 10804 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )  =  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  x.  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) ) ) )
1636oveq2i 6661 . . . . . . . . . . 11  |-  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  x.  T )  =  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  x.  ( 1  /  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) ) ) )
164162, 163syl6reqr 2675 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  =  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) ) ) )
165 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  r  e.  RR+ )
166102rpred 11872 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  RR )
167166ltp1d 10954 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  <  ( (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r )  +  1 ) )
168102rpcnd 11874 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  CC )
169168, 152addcomd 10238 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r )  +  1 )  =  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
170167, 169breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  <  ( 1  +  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
) ) )
17157, 165, 105, 170ltdiv23d 11937 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )  <  r )
172164, 171eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  <  r )
17348, 60, 50, 158, 172lelttrd 10195 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  <  r
)
17441, 48, 50, 52, 173lelttrd 10195 . . . . . . 7  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S w ) )  <  r
)
175174expr 643 . . . . . 6  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
z  e.  CC  /\  w  e.  X )
)  ->  ( (
( x ( abs 
o.  -  ) z
)  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )
176175ralrimivva 2971 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )
177 breq2 4657 . . . . . . . . 9  |-  ( s  =  T  ->  (
( x ( abs 
o.  -  ) z
)  <  s  <->  ( x
( abs  o.  -  )
z )  <  T
) )
178 breq2 4657 . . . . . . . . 9  |-  ( s  =  T  ->  (
( y C w )  <  s  <->  ( y C w )  < 
T ) )
179177, 178anbi12d 747 . . . . . . . 8  |-  ( s  =  T  ->  (
( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  <-> 
( ( x ( abs  o.  -  )
z )  <  T  /\  ( y C w )  <  T ) ) )
180179imbi1d 331 . . . . . . 7  |-  ( s  =  T  ->  (
( ( ( x ( abs  o.  -  ) z )  < 
s  /\  ( y C w )  < 
s )  ->  (
( x S y ) C ( z S w ) )  <  r )  <->  ( (
( x ( abs 
o.  -  ) z
)  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) ) )
1811802ralbidv 2989 . . . . . 6  |-  ( s  =  T  ->  ( A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
)  <->  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) ) )
182181rspcev 3309 . . . . 5  |-  ( ( T  e.  RR+  /\  A. z  e.  CC  A. w  e.  X  ( (
( x ( abs 
o.  -  ) z
)  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )  ->  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  ) z )  <  s  /\  (
y C w )  <  s )  -> 
( ( x S y ) C ( z S w ) )  <  r ) )
18326, 176, 182syl2anc 693 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  (
( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )
184183ralrimiva 2966 . . 3  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  ) z )  <  s  /\  (
y C w )  <  s )  -> 
( ( x S y ) C ( z S w ) )  <  r ) )
185184rgen2 2975 . 2  |-  A. x  e.  CC  A. y  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  (
( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
)
186 cnxmet 22576 . . 3  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
1872, 27imsxmet 27547 . . . 4  |-  ( U  e.  NrmCVec  ->  C  e.  ( *Met `  X
) )
1881, 187ax-mp 5 . . 3  |-  C  e.  ( *Met `  X )
189 smcn.k . . . . 5  |-  K  =  ( TopOpen ` fld )
190189cnfldtopn 22585 . . . 4  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
191 smcn.j . . . 4  |-  J  =  ( MetOpen `  C )
192190, 191, 191txmetcn 22353 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  C  e.  ( *Met `  X )  /\  C  e.  ( *Met `  X ) )  ->  ( S  e.  ( ( K  tX  J )  Cn  J
)  <->  ( S :
( CC  X.  X
) --> X  /\  A. x  e.  CC  A. y  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
) ) ) )
193186, 188, 188, 192mp3an 1424 . 2  |-  ( S  e.  ( ( K 
tX  J )  Cn  J )  <->  ( S : ( CC  X.  X ) --> X  /\  A. x  e.  CC  A. y  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  ) z )  <  s  /\  (
y C w )  <  s )  -> 
( ( x S y ) C ( z S w ) )  <  r ) ) )
1945, 185, 193mpbir2an 955 1  |-  S  e.  ( ( K  tX  J )  Cn  J
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   RR+crp 11832   abscabs 13974   TopOpenctopn 16082   *Metcxmt 19731   Metcme 19732   MetOpencmopn 19736  ℂfldccnfld 19746    Cn ccn 21028    tX ctx 21363   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   -vcnsb 27444   normCVcnmcv 27445   IndMetcims 27446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-tms 22127  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456
This theorem is referenced by:  smcn  27553
  Copyright terms: Public domain W3C validator