| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe1m | Structured version Visualization version Unicode version | ||
| Description: Ordinal exponentiation with a mantissa of 1. Proposition 8.31(3) of [TakeutiZaring] p. 67. (Contributed by NM, 2-Jan-2005.) |
| Ref | Expression |
|---|---|
| oe1m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6658 |
. . 3
| |
| 2 | 1 | eqeq1d 2624 |
. 2
|
| 3 | oveq2 6658 |
. . 3
| |
| 4 | 3 | eqeq1d 2624 |
. 2
|
| 5 | oveq2 6658 |
. . 3
| |
| 6 | 5 | eqeq1d 2624 |
. 2
|
| 7 | oveq2 6658 |
. . 3
| |
| 8 | 7 | eqeq1d 2624 |
. 2
|
| 9 | 1on 7567 |
. . 3
| |
| 10 | oe0 7602 |
. . 3
| |
| 11 | 9, 10 | ax-mp 5 |
. 2
|
| 12 | oesuc 7607 |
. . . . 5
| |
| 13 | 9, 12 | mpan 706 |
. . . 4
|
| 14 | oveq1 6657 |
. . . . 5
| |
| 15 | om1 7622 |
. . . . . 6
| |
| 16 | 9, 15 | ax-mp 5 |
. . . . 5
|
| 17 | 14, 16 | syl6eq 2672 |
. . . 4
|
| 18 | 13, 17 | sylan9eq 2676 |
. . 3
|
| 19 | 18 | ex 450 |
. 2
|
| 20 | iuneq2 4537 |
. . 3
| |
| 21 | vex 3203 |
. . . . . 6
| |
| 22 | 0lt1o 7584 |
. . . . . . . 8
| |
| 23 | oelim 7614 |
. . . . . . . 8
| |
| 24 | 22, 23 | mpan2 707 |
. . . . . . 7
|
| 25 | 9, 24 | mpan 706 |
. . . . . 6
|
| 26 | 21, 25 | mpan 706 |
. . . . 5
|
| 27 | 26 | eqeq1d 2624 |
. . . 4
|
| 28 | 0ellim 5787 |
. . . . . 6
| |
| 29 | ne0i 3921 |
. . . . . 6
| |
| 30 | iunconst 4529 |
. . . . . 6
| |
| 31 | 28, 29, 30 | 3syl 18 |
. . . . 5
|
| 32 | 31 | eqeq2d 2632 |
. . . 4
|
| 33 | 27, 32 | bitr4d 271 |
. . 3
|
| 34 | 20, 33 | syl5ibr 236 |
. 2
|
| 35 | 2, 4, 6, 8, 11, 19, 34 | tfinds 7059 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-oexp 7566 |
| This theorem is referenced by: oewordi 7671 oeoe 7679 cantnflem2 8587 |
| Copyright terms: Public domain | W3C validator |