MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth Structured version   Visualization version   Unicode version

Theorem omopth 7738
Description: An ordered pair theorem for finite integers. Analogous to nn0opthi 13057. (Contributed by Scott Fenton, 1-May-2012.)
Assertion
Ref Expression
omopth  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om )
)  ->  ( (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem omopth
StepHypRef Expression
1 oveq1 6657 . . . . . 6  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  ( A  +o  B )  =  ( if ( A  e.  om ,  A ,  (/) )  +o  B
) )
21, 1oveq12d 6668 . . . . 5  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( A  +o  B
)  .o  ( A  +o  B ) )  =  ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) ) )
32oveq1d 6665 . . . 4  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B ) )
43eqeq1d 2624 . . 3  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  B
)  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) ) )
5 eqeq1 2626 . . . 4  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  ( A  =  C  <->  if ( A  e.  om ,  A ,  (/) )  =  C ) )
65anbi1d 741 . . 3  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( A  =  C  /\  B  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) ) )
74, 6bibi12d 335 . 2  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( A  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) ) ) )
8 oveq2 6658 . . . . . 6  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  ( if ( A  e.  om ,  A ,  (/) )  +o  B )  =  ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) ) )
98, 8oveq12d 6668 . . . . 5  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  +o  B
)  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  =  ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) ) )
10 id 22 . . . . 5  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  B  =  if ( B  e. 
om ,  B ,  (/) ) )
119, 10oveq12d 6668 . . . 4  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )
1211eqeq1d 2624 . . 3  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) ) )
13 eqeq1 2626 . . . 4  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  ( B  =  D  <->  if ( B  e.  om ,  B ,  (/) )  =  D ) )
1413anbi2d 740 . . 3  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) )
1512, 14bibi12d 335 . 2  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) ) )
16 oveq1 6657 . . . . . 6  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  ( C  +o  D )  =  ( if ( C  e.  om ,  C ,  (/) )  +o  D
) )
1716, 16oveq12d 6668 . . . . 5  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( C  +o  D
)  .o  ( C  +o  D ) )  =  ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) ) )
1817oveq1d 6665 . . . 4  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D ) )
1918eqeq2d 2632 . . 3  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D ) ) )
20 eqeq2 2633 . . . 4  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  ( if ( A  e.  om ,  A ,  (/) )  =  C  <->  if ( A  e. 
om ,  A ,  (/) )  =  if ( C  e.  om ,  C ,  (/) ) ) )
2120anbi1d 741 . . 3  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) )
2219, 21bibi12d 335 . 2  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) ) )
23 oveq2 6658 . . . . . 6  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  ( if ( C  e.  om ,  C ,  (/) )  +o  D )  =  ( if ( C  e. 
om ,  C ,  (/) )  +o  if ( D  e.  om ,  D ,  (/) ) ) )
2423, 23oveq12d 6668 . . . . 5  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( if ( C  e.  om ,  C ,  (/) )  +o  D
)  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  =  ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) ) )
25 id 22 . . . . 5  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  D  =  if ( D  e. 
om ,  D ,  (/) ) )
2624, 25oveq12d 6668 . . . 4  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )
2726eqeq2d 2632 . . 3  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) ) )
28 eqeq2 2633 . . . 4  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  ( if ( B  e.  om ,  B ,  (/) )  =  D  <->  if ( B  e. 
om ,  B ,  (/) )  =  if ( D  e.  om ,  D ,  (/) ) ) )
2928anbi2d 740 . . 3  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e.  om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) ) )
3027, 29bibi12d 335 . 2  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) ) ) )
31 peano1 7085 . . . 4  |-  (/)  e.  om
3231elimel 4150 . . 3  |-  if ( A  e.  om ,  A ,  (/) )  e. 
om
3331elimel 4150 . . 3  |-  if ( B  e.  om ,  B ,  (/) )  e. 
om
3431elimel 4150 . . 3  |-  if ( C  e.  om ,  C ,  (/) )  e. 
om
3531elimel 4150 . . 3  |-  if ( D  e.  om ,  D ,  (/) )  e. 
om
3632, 33, 34, 35omopthi 7737 . 2  |-  ( ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) )
377, 15, 22, 30, 36dedth4h 4142 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om )
)  ->  ( (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915   ifcif 4086  (class class class)co 6650   omcom 7065    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator