MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth2 Structured version   Visualization version   Unicode version

Theorem omopth2 7664
Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omopth2  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( ( A  .o  B )  +o  C )  =  ( ( A  .o  D
)  +o  E )  <-> 
( B  =  D  /\  C  =  E ) ) )

Proof of Theorem omopth2
StepHypRef Expression
1 simpl2l 1114 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  B  e.  On )
2 eloni 5733 . . . . . . 7  |-  ( B  e.  On  ->  Ord  B )
31, 2syl 17 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  Ord  B )
4 simpl3l 1116 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  D  e.  On )
5 eloni 5733 . . . . . . 7  |-  ( D  e.  On  ->  Ord  D )
64, 5syl 17 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  Ord  D )
7 ordtri3or 5755 . . . . . 6  |-  ( ( Ord  B  /\  Ord  D )  ->  ( B  e.  D  \/  B  =  D  \/  D  e.  B ) )
83, 6, 7syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( B  e.  D  \/  B  =  D  \/  D  e.  B ) )
9 simpr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( A  .o  B )  +o  C )  =  ( ( A  .o  D
)  +o  E ) )
10 simpl1l 1112 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  A  e.  On )
11 omcl 7616 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  D  e.  On )  ->  ( A  .o  D
)  e.  On )
1210, 4, 11syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( A  .o  D )  e.  On )
13 simpl3r 1117 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  E  e.  A
)
14 onelon 5748 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  E  e.  A )  ->  E  e.  On )
1510, 13, 14syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  E  e.  On )
16 oacl 7615 . . . . . . . . . . 11  |-  ( ( ( A  .o  D
)  e.  On  /\  E  e.  On )  ->  ( ( A  .o  D )  +o  E
)  e.  On )
1712, 15, 16syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( A  .o  D )  +o  E )  e.  On )
18 eloni 5733 . . . . . . . . . 10  |-  ( ( ( A  .o  D
)  +o  E )  e.  On  ->  Ord  ( ( A  .o  D )  +o  E
) )
19 ordirr 5741 . . . . . . . . . 10  |-  ( Ord  ( ( A  .o  D )  +o  E
)  ->  -.  (
( A  .o  D
)  +o  E )  e.  ( ( A  .o  D )  +o  E ) )
2017, 18, 193syl 18 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  ( ( A  .o  D )  +o  E )  e.  ( ( A  .o  D
)  +o  E ) )
219, 20eqneltrd 2720 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  D
)  +o  E ) )
22 orc 400 . . . . . . . . 9  |-  ( B  e.  D  ->  ( B  e.  D  \/  ( B  =  D  /\  C  e.  E
) ) )
23 omeulem2 7663 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( B  e.  D  \/  ( B  =  D  /\  C  e.  E ) )  -> 
( ( A  .o  B )  +o  C
)  e.  ( ( A  .o  D )  +o  E ) ) )
2423adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( B  e.  D  \/  ( B  =  D  /\  C  e.  E )
)  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  D
)  +o  E ) ) )
2522, 24syl5 34 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( B  e.  D  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  D
)  +o  E ) ) )
2621, 25mtod 189 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  B  e.  D )
2726pm2.21d 118 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( B  e.  D  ->  B  =  D ) )
28 idd 24 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( B  =  D  ->  B  =  D ) )
2920, 9neleqtrrd 2723 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  ( ( A  .o  D )  +o  E )  e.  ( ( A  .o  B
)  +o  C ) )
30 orc 400 . . . . . . . . 9  |-  ( D  e.  B  ->  ( D  e.  B  \/  ( D  =  B  /\  E  e.  C
) ) )
31 simpl1r 1113 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  A  =/=  (/) )
32 simpl2r 1115 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  C  e.  A
)
33 omeulem2 7663 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( D  e.  On  /\  E  e.  A )  /\  ( B  e.  On  /\  C  e.  A ) )  -> 
( ( D  e.  B  \/  ( D  =  B  /\  E  e.  C ) )  -> 
( ( A  .o  D )  +o  E
)  e.  ( ( A  .o  B )  +o  C ) ) )
3410, 31, 4, 13, 1, 32, 33syl222anc 1342 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( D  e.  B  \/  ( D  =  B  /\  E  e.  C )
)  ->  ( ( A  .o  D )  +o  E )  e.  ( ( A  .o  B
)  +o  C ) ) )
3530, 34syl5 34 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( D  e.  B  ->  ( ( A  .o  D )  +o  E )  e.  ( ( A  .o  B
)  +o  C ) ) )
3629, 35mtod 189 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  D  e.  B )
3736pm2.21d 118 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( D  e.  B  ->  B  =  D ) )
3827, 28, 373jaod 1392 . . . . 5  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( B  e.  D  \/  B  =  D  \/  D  e.  B )  ->  B  =  D ) )
398, 38mpd 15 . . . 4  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  B  =  D )
40 onelon 5748 . . . . . . . 8  |-  ( ( A  e.  On  /\  C  e.  A )  ->  C  e.  On )
41 eloni 5733 . . . . . . . 8  |-  ( C  e.  On  ->  Ord  C )
4240, 41syl 17 . . . . . . 7  |-  ( ( A  e.  On  /\  C  e.  A )  ->  Ord  C )
4310, 32, 42syl2anc 693 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  Ord  C )
44 eloni 5733 . . . . . . . 8  |-  ( E  e.  On  ->  Ord  E )
4514, 44syl 17 . . . . . . 7  |-  ( ( A  e.  On  /\  E  e.  A )  ->  Ord  E )
4610, 13, 45syl2anc 693 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  Ord  E )
47 ordtri3or 5755 . . . . . 6  |-  ( ( Ord  C  /\  Ord  E )  ->  ( C  e.  E  \/  C  =  E  \/  E  e.  C ) )
4843, 46, 47syl2anc 693 . . . . 5  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( C  e.  E  \/  C  =  E  \/  E  e.  C ) )
49 olc 399 . . . . . . . . . 10  |-  ( ( B  =  D  /\  C  e.  E )  ->  ( B  e.  D  \/  ( B  =  D  /\  C  e.  E
) ) )
5049, 24syl5 34 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( B  =  D  /\  C  e.  E )  ->  (
( A  .o  B
)  +o  C )  e.  ( ( A  .o  D )  +o  E ) ) )
5139, 50mpand 711 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( C  e.  E  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  D
)  +o  E ) ) )
5221, 51mtod 189 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  C  e.  E )
5352pm2.21d 118 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( C  e.  E  ->  C  =  E ) )
54 idd 24 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( C  =  E  ->  C  =  E ) )
5539eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  D  =  B )
56 olc 399 . . . . . . . . . 10  |-  ( ( D  =  B  /\  E  e.  C )  ->  ( D  e.  B  \/  ( D  =  B  /\  E  e.  C
) ) )
5756, 34syl5 34 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( D  =  B  /\  E  e.  C )  ->  (
( A  .o  D
)  +o  E )  e.  ( ( A  .o  B )  +o  C ) ) )
5855, 57mpand 711 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( E  e.  C  ->  ( ( A  .o  D )  +o  E )  e.  ( ( A  .o  B
)  +o  C ) ) )
5929, 58mtod 189 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  -.  E  e.  C )
6059pm2.21d 118 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( E  e.  C  ->  C  =  E ) )
6153, 54, 603jaod 1392 . . . . 5  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( ( C  e.  E  \/  C  =  E  \/  E  e.  C )  ->  C  =  E ) )
6248, 61mpd 15 . . . 4  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  C  =  E )
6339, 62jca 554 . . 3  |-  ( ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  /\  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )  ->  ( B  =  D  /\  C  =  E ) )
6463ex 450 . 2  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( ( A  .o  B )  +o  C )  =  ( ( A  .o  D
)  +o  E )  ->  ( B  =  D  /\  C  =  E ) ) )
65 oveq2 6658 . . 3  |-  ( B  =  D  ->  ( A  .o  B )  =  ( A  .o  D
) )
66 id 22 . . 3  |-  ( C  =  E  ->  C  =  E )
6765, 66oveqan12d 6669 . 2  |-  ( ( B  =  D  /\  C  =  E )  ->  ( ( A  .o  B )  +o  C
)  =  ( ( A  .o  D )  +o  E ) )
6864, 67impbid1 215 1  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( ( A  .o  B )  +o  C )  =  ( ( A  .o  D
)  +o  E )  <-> 
( B  =  D  /\  C  =  E ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   Ord word 5722   Oncon0 5723  (class class class)co 6650    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omeu  7665  dfac12lem2  8966
  Copyright terms: Public domain W3C validator