MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeu Structured version   Visualization version   Unicode version

Theorem omeu 7665
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeu  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E! z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
Distinct variable groups:    x, A, y, z    x, B, y, z

Proof of Theorem omeu
Dummy variables  r 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeulem1 7662 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
2 opex 4932 . . . . . . . . 9  |-  <. x ,  y >.  e.  _V
32isseti 3209 . . . . . . . 8  |-  E. z 
z  =  <. x ,  y >.
4 19.41v 1914 . . . . . . . 8  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <-> 
( E. z  z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B ) )
53, 4mpbiran 953 . . . . . . 7  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <-> 
( ( A  .o  x )  +o  y
)  =  B )
65rexbii 3041 . . . . . 6  |-  ( E. y  e.  A  E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <->  E. y  e.  A  ( ( A  .o  x )  +o  y
)  =  B )
7 rexcom4 3225 . . . . . 6  |-  ( E. y  e.  A  E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <->  E. z E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )
86, 7bitr3i 266 . . . . 5  |-  ( E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B  <->  E. z E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
98rexbii 3041 . . . 4  |-  ( E. x  e.  On  E. y  e.  A  (
( A  .o  x
)  +o  y )  =  B  <->  E. x  e.  On  E. z E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
10 rexcom4 3225 . . . 4  |-  ( E. x  e.  On  E. z E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  E. z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
119, 10bitri 264 . . 3  |-  ( E. x  e.  On  E. y  e.  A  (
( A  .o  x
)  +o  y )  =  B  <->  E. z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
121, 11sylib 208 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
13 simp2rl 1130 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  z  =  <. x ,  y >.
)
14 simp3rl 1134 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  t  =  <. r ,  s >.
)
15 simp2rr 1131 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( ( A  .o  x )  +o  y )  =  B )
16 simp3rr 1135 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( ( A  .o  r )  +o  s )  =  B )
1715, 16eqtr4d 2659 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( ( A  .o  x )  +o  y )  =  ( ( A  .o  r
)  +o  s ) )
18 simp11 1091 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  A  e.  On )
19 simp13 1093 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  A  =/=  (/) )
20 simp2ll 1128 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  x  e.  On )
21 simp2lr 1129 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  y  e.  A )
22 simp3ll 1132 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  r  e.  On )
23 simp3lr 1133 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  s  e.  A )
24 omopth2 7664 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( x  e.  On  /\  y  e.  A )  /\  ( r  e.  On  /\  s  e.  A ) )  -> 
( ( ( A  .o  x )  +o  y )  =  ( ( A  .o  r
)  +o  s )  <-> 
( x  =  r  /\  y  =  s ) ) )
2518, 19, 20, 21, 22, 23, 24syl222anc 1342 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( (
( A  .o  x
)  +o  y )  =  ( ( A  .o  r )  +o  s )  <->  ( x  =  r  /\  y  =  s ) ) )
2617, 25mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( x  =  r  /\  y  =  s ) )
27 opeq12 4404 . . . . . . . . . . . . 13  |-  ( ( x  =  r  /\  y  =  s )  -> 
<. x ,  y >.  =  <. r ,  s
>. )
2826, 27syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  <. x ,  y >.  =  <. r ,  s >. )
2914, 28eqtr4d 2659 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  t  =  <. x ,  y >.
)
3013, 29eqtr4d 2659 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  z  =  t )
31303expia 1267 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) ) )  ->  (
( ( r  e.  On  /\  s  e.  A )  /\  (
t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) )  ->  z  =  t ) )
3231exp4b 632 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
( ( x  e.  On  /\  y  e.  A )  /\  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )  ->  ( ( r  e.  On  /\  s  e.  A )  ->  (
( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  -> 
z  =  t ) ) ) )
3332expd 452 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
( x  e.  On  /\  y  e.  A )  ->  ( ( z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B )  ->  ( (
r  e.  On  /\  s  e.  A )  ->  ( ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B )  ->  z  =  t ) ) ) ) )
3433rexlimdvv 3037 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  -> 
( ( r  e.  On  /\  s  e.  A )  ->  (
( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  -> 
z  =  t ) ) ) )
3534imp 445 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B ) )  ->  (
( r  e.  On  /\  s  e.  A )  ->  ( ( t  =  <. r ,  s
>.  /\  ( ( A  .o  r )  +o  s )  =  B )  ->  z  =  t ) ) )
3635rexlimdvv 3037 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B ) )  ->  ( E. r  e.  On  E. s  e.  A  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  -> 
z  =  t ) )
3736expimpd 629 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
( E. x  e.  On  E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  /\  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) )  ->  z  =  t ) )
3837alrimivv 1856 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  A. z A. t ( ( E. x  e.  On  E. y  e.  A  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  /\  E. r  e.  On  E. s  e.  A  (
t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) )  ->  z  =  t ) )
39 opeq1 4402 . . . . . . 7  |-  ( x  =  r  ->  <. x ,  y >.  =  <. r ,  y >. )
4039eqeq2d 2632 . . . . . 6  |-  ( x  =  r  ->  (
z  =  <. x ,  y >.  <->  z  =  <. r ,  y >.
) )
41 oveq2 6658 . . . . . . . 8  |-  ( x  =  r  ->  ( A  .o  x )  =  ( A  .o  r
) )
4241oveq1d 6665 . . . . . . 7  |-  ( x  =  r  ->  (
( A  .o  x
)  +o  y )  =  ( ( A  .o  r )  +o  y ) )
4342eqeq1d 2624 . . . . . 6  |-  ( x  =  r  ->  (
( ( A  .o  x )  +o  y
)  =  B  <->  ( ( A  .o  r )  +o  y )  =  B ) )
4440, 43anbi12d 747 . . . . 5  |-  ( x  =  r  ->  (
( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  ( z  =  <. r ,  y
>.  /\  ( ( A  .o  r )  +o  y )  =  B ) ) )
45 opeq2 4403 . . . . . . 7  |-  ( y  =  s  ->  <. r ,  y >.  =  <. r ,  s >. )
4645eqeq2d 2632 . . . . . 6  |-  ( y  =  s  ->  (
z  =  <. r ,  y >.  <->  z  =  <. r ,  s >.
) )
47 oveq2 6658 . . . . . . 7  |-  ( y  =  s  ->  (
( A  .o  r
)  +o  y )  =  ( ( A  .o  r )  +o  s ) )
4847eqeq1d 2624 . . . . . 6  |-  ( y  =  s  ->  (
( ( A  .o  r )  +o  y
)  =  B  <->  ( ( A  .o  r )  +o  s )  =  B ) )
4946, 48anbi12d 747 . . . . 5  |-  ( y  =  s  ->  (
( z  =  <. r ,  y >.  /\  (
( A  .o  r
)  +o  y )  =  B )  <->  ( z  =  <. r ,  s
>.  /\  ( ( A  .o  r )  +o  s )  =  B ) ) )
5044, 49cbvrex2v 3180 . . . 4  |-  ( E. x  e.  On  E. y  e.  A  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  E. r  e.  On  E. s  e.  A  ( z  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) )
51 eqeq1 2626 . . . . . 6  |-  ( z  =  t  ->  (
z  =  <. r ,  s >.  <->  t  =  <. r ,  s >.
) )
5251anbi1d 741 . . . . 5  |-  ( z  =  t  ->  (
( z  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  <->  ( t  =  <. r ,  s
>.  /\  ( ( A  .o  r )  +o  s )  =  B ) ) )
53522rexbidv 3057 . . . 4  |-  ( z  =  t  ->  ( E. r  e.  On  E. s  e.  A  ( z  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  <->  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) ) )
5450, 53syl5bb 272 . . 3  |-  ( z  =  t  ->  ( E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) ) )
5554eu4 2518 . 2  |-  ( E! z E. x  e.  On  E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <-> 
( E. z E. x  e.  On  E. y  e.  A  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  /\  A. z A. t ( ( E. x  e.  On  E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  /\  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) )  ->  z  =  t ) ) )
5612, 38, 55sylanbrc 698 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E! z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470    =/= wne 2794   E.wrex 2913   (/)c0 3915   <.cop 4183   Oncon0 5723  (class class class)co 6650    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565
This theorem is referenced by:  oeeui  7682  omxpenlem  8061
  Copyright terms: Public domain W3C validator