MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omord Structured version   Visualization version   Unicode version

Theorem omord 7648
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )

Proof of Theorem omord
StepHypRef Expression
1 omord2 7647 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
21ex 450 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
32pm5.32rd 672 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C ) ) )
4 simpl 473 . . 3  |-  ( ( ( C  .o  A
)  e.  ( C  .o  B )  /\  (/) 
e.  C )  -> 
( C  .o  A
)  e.  ( C  .o  B ) )
5 ne0i 3921 . . . . . . . 8  |-  ( ( C  .o  A )  e.  ( C  .o  B )  ->  ( C  .o  B )  =/=  (/) )
6 om0r 7619 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( (/) 
.o  B )  =  (/) )
7 oveq1 6657 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( C  .o  B )  =  ( (/)  .o  B
) )
87eqeq1d 2624 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( ( C  .o  B )  =  (/)  <->  ( (/)  .o  B
)  =  (/) ) )
96, 8syl5ibrcom 237 . . . . . . . . 9  |-  ( B  e.  On  ->  ( C  =  (/)  ->  ( C  .o  B )  =  (/) ) )
109necon3d 2815 . . . . . . . 8  |-  ( B  e.  On  ->  (
( C  .o  B
)  =/=  (/)  ->  C  =/=  (/) ) )
115, 10syl5 34 . . . . . . 7  |-  ( B  e.  On  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
1211adantr 481 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
13 on0eln0 5780 . . . . . . 7  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
1413adantl 482 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1512, 14sylibrd 249 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  (/)  e.  C ) )
16153adant1 1079 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  (/) 
e.  C ) )
1716ancld 576 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C ) ) )
184, 17impbid2 216 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
193, 18bitrd 268 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   Oncon0 5723  (class class class)co 6650    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omlimcl  7658  oneo  7661
  Copyright terms: Public domain W3C validator