MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneo Structured version   Visualization version   Unicode version

Theorem oneo 7661
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
Assertion
Ref Expression
oneo  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  =  ( 2o  .o  A ) )  ->  -.  suc  C  =  ( 2o  .o  B ) )

Proof of Theorem oneo
StepHypRef Expression
1 onnbtwn 5818 . . 3  |-  ( A  e.  On  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
213ad2ant1 1082 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  =  ( 2o  .o  A ) )  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
3 suceq 5790 . . . . 5  |-  ( C  =  ( 2o  .o  A )  ->  suc  C  =  suc  ( 2o 
.o  A ) )
43eqeq1d 2624 . . . 4  |-  ( C  =  ( 2o  .o  A )  ->  ( suc  C  =  ( 2o 
.o  B )  <->  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) ) )
543ad2ant3 1084 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  =  ( 2o  .o  A ) )  -> 
( suc  C  =  ( 2o  .o  B
)  <->  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) ) )
6 ovex 6678 . . . . . . . 8  |-  ( 2o 
.o  A )  e. 
_V
76sucid 5804 . . . . . . 7  |-  ( 2o 
.o  A )  e. 
suc  ( 2o  .o  A )
8 eleq2 2690 . . . . . . 7  |-  ( suc  ( 2o  .o  A
)  =  ( 2o 
.o  B )  -> 
( ( 2o  .o  A )  e.  suc  ( 2o  .o  A
)  <->  ( 2o  .o  A )  e.  ( 2o  .o  B ) ) )
97, 8mpbii 223 . . . . . 6  |-  ( suc  ( 2o  .o  A
)  =  ( 2o 
.o  B )  -> 
( 2o  .o  A
)  e.  ( 2o 
.o  B ) )
10 2on 7568 . . . . . . . 8  |-  2o  e.  On
11 omord 7648 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  2o  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  2o )  <-> 
( 2o  .o  A
)  e.  ( 2o 
.o  B ) ) )
1210, 11mp3an3 1413 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  e.  B  /\  (/)  e.  2o ) 
<->  ( 2o  .o  A
)  e.  ( 2o 
.o  B ) ) )
13 simpl 473 . . . . . . 7  |-  ( ( A  e.  B  /\  (/) 
e.  2o )  ->  A  e.  B )
1412, 13syl6bir 244 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( 2o  .o  A )  e.  ( 2o  .o  B )  ->  A  e.  B
) )
159, 14syl5 34 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  ( 2o 
.o  A )  =  ( 2o  .o  B
)  ->  A  e.  B ) )
16 simpr 477 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )  ->  suc  ( 2o  .o  A
)  =  ( 2o 
.o  B ) )
17 omcl 7616 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  On  /\  A  e.  On )  ->  ( 2o  .o  A
)  e.  On )
1810, 17mpan 706 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( 2o  .o  A )  e.  On )
19 oa1suc 7611 . . . . . . . . . . . 12  |-  ( ( 2o  .o  A )  e.  On  ->  (
( 2o  .o  A
)  +o  1o )  =  suc  ( 2o 
.o  A ) )
2018, 19syl 17 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( 2o  .o  A
)  +o  1o )  =  suc  ( 2o 
.o  A ) )
21 1on 7567 . . . . . . . . . . . . . . . 16  |-  1o  e.  On
2221elexi 3213 . . . . . . . . . . . . . . 15  |-  1o  e.  _V
2322sucid 5804 . . . . . . . . . . . . . 14  |-  1o  e.  suc  1o
24 df-2o 7561 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
2523, 24eleqtrri 2700 . . . . . . . . . . . . 13  |-  1o  e.  2o
26 oaord 7627 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  On  /\  2o  e.  On  /\  ( 2o  .o  A )  e.  On )  ->  ( 1o  e.  2o  <->  ( ( 2o  .o  A )  +o  1o )  e.  ( ( 2o  .o  A
)  +o  2o ) ) )
2721, 10, 26mp3an12 1414 . . . . . . . . . . . . . 14  |-  ( ( 2o  .o  A )  e.  On  ->  ( 1o  e.  2o  <->  ( ( 2o  .o  A )  +o  1o )  e.  ( ( 2o  .o  A
)  +o  2o ) ) )
2818, 27syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( 1o  e.  2o  <->  ( ( 2o  .o  A )  +o  1o )  e.  ( ( 2o  .o  A
)  +o  2o ) ) )
2925, 28mpbii 223 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  (
( 2o  .o  A
)  +o  1o )  e.  ( ( 2o 
.o  A )  +o  2o ) )
30 omsuc 7606 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  On  /\  A  e.  On )  ->  ( 2o  .o  suc  A )  =  ( ( 2o  .o  A )  +o  2o ) )
3110, 30mpan 706 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( 2o  .o  suc  A )  =  ( ( 2o 
.o  A )  +o  2o ) )
3229, 31eleqtrrd 2704 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
( 2o  .o  A
)  +o  1o )  e.  ( 2o  .o  suc  A ) )
3320, 32eqeltrrd 2702 . . . . . . . . . 10  |-  ( A  e.  On  ->  suc  ( 2o  .o  A
)  e.  ( 2o 
.o  suc  A )
)
3433ad2antrr 762 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )  ->  suc  ( 2o  .o  A
)  e.  ( 2o 
.o  suc  A )
)
3516, 34eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )  ->  ( 2o  .o  B )  e.  ( 2o  .o  suc  A ) )
36 suceloni 7013 . . . . . . . . . . 11  |-  ( A  e.  On  ->  suc  A  e.  On )
37 omord 7648 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  suc  A  e.  On  /\  2o  e.  On )  -> 
( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
3810, 37mp3an3 1413 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  suc  A  e.  On )  ->  ( ( B  e.  suc  A  /\  (/) 
e.  2o )  <->  ( 2o  .o  B )  e.  ( 2o  .o  suc  A
) ) )
3936, 38sylan2 491 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4039ancoms 469 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4140adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )  ->  (
( B  e.  suc  A  /\  (/)  e.  2o )  <-> 
( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4235, 41mpbird 247 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )  ->  ( B  e.  suc  A  /\  (/) 
e.  2o ) )
4342simpld 475 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )  ->  B  e.  suc  A )
4443ex 450 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  ( 2o 
.o  A )  =  ( 2o  .o  B
)  ->  B  e.  suc  A ) )
4515, 44jcad 555 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  ( 2o 
.o  A )  =  ( 2o  .o  B
)  ->  ( A  e.  B  /\  B  e. 
suc  A ) ) )
46453adant3 1081 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  =  ( 2o  .o  A ) )  -> 
( suc  ( 2o  .o  A )  =  ( 2o  .o  B )  ->  ( A  e.  B  /\  B  e. 
suc  A ) ) )
475, 46sylbid 230 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  =  ( 2o  .o  A ) )  -> 
( suc  C  =  ( 2o  .o  B
)  ->  ( A  e.  B  /\  B  e. 
suc  A ) ) )
482, 47mtod 189 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  =  ( 2o  .o  A ) )  ->  -.  suc  C  =  ( 2o  .o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   (/)c0 3915   Oncon0 5723   suc csuc 5725  (class class class)co 6650   1oc1o 7553   2oc2o 7554    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator