MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Structured version   Visualization version   Unicode version

Theorem omopthlem2 7736
Description: Lemma for omopthi 7737. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1  |-  A  e. 
om
omopthlem2.2  |-  B  e. 
om
omopthlem2.3  |-  C  e. 
om
omopthlem2.4  |-  D  e. 
om
Assertion
Ref Expression
omopthlem2  |-  ( ( A  +o  B )  e.  C  ->  -.  ( ( C  .o  C )  +o  D
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B ) )

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7  |-  C  e. 
om
21, 1nnmcli 7695 . . . . . 6  |-  ( C  .o  C )  e. 
om
3 omopthlem2.4 . . . . . 6  |-  D  e. 
om
42, 3nnacli 7694 . . . . 5  |-  ( ( C  .o  C )  +o  D )  e. 
om
54nnoni 7072 . . . 4  |-  ( ( C  .o  C )  +o  D )  e.  On
65onirri 5834 . . 3  |-  -.  (
( C  .o  C
)  +o  D )  e.  ( ( C  .o  C )  +o  D )
7 eleq1 2689 . . 3  |-  ( ( ( C  .o  C
)  +o  D )  =  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  ->  (
( ( C  .o  C )  +o  D
)  e.  ( ( C  .o  C )  +o  D )  <->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  e.  ( ( C  .o  C )  +o  D
) ) )
86, 7mtbii 316 . 2  |-  ( ( ( C  .o  C
)  +o  D )  =  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  e.  ( ( C  .o  C )  +o  D ) )
9 nnaword1 7709 . . . 4  |-  ( ( ( C  .o  C
)  e.  om  /\  D  e.  om )  ->  ( C  .o  C
)  C_  ( ( C  .o  C )  +o  D ) )
102, 3, 9mp2an 708 . . 3  |-  ( C  .o  C )  C_  ( ( C  .o  C )  +o  D
)
11 omopthlem2.2 . . . . . . . . 9  |-  B  e. 
om
12 omopthlem2.1 . . . . . . . . . . 11  |-  A  e. 
om
1312, 11nnacli 7694 . . . . . . . . . 10  |-  ( A  +o  B )  e. 
om
1413, 12nnacli 7694 . . . . . . . . 9  |-  ( ( A  +o  B )  +o  A )  e. 
om
15 nnaword1 7709 . . . . . . . . 9  |-  ( ( B  e.  om  /\  ( ( A  +o  B )  +o  A
)  e.  om )  ->  B  C_  ( B  +o  ( ( A  +o  B )  +o  A
) ) )
1611, 14, 15mp2an 708 . . . . . . . 8  |-  B  C_  ( B  +o  (
( A  +o  B
)  +o  A ) )
17 nnacom 7697 . . . . . . . . 9  |-  ( ( B  e.  om  /\  ( ( A  +o  B )  +o  A
)  e.  om )  ->  ( B  +o  (
( A  +o  B
)  +o  A ) )  =  ( ( ( A  +o  B
)  +o  A )  +o  B ) )
1811, 14, 17mp2an 708 . . . . . . . 8  |-  ( B  +o  ( ( A  +o  B )  +o  A ) )  =  ( ( ( A  +o  B )  +o  A )  +o  B
)
1916, 18sseqtri 3637 . . . . . . 7  |-  B  C_  ( ( ( A  +o  B )  +o  A )  +o  B
)
20 nnaass 7702 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( ( A  +o  B )  +o  A
)  +o  B )  =  ( ( A  +o  B )  +o  ( A  +o  B
) ) )
2113, 12, 11, 20mp3an 1424 . . . . . . . 8  |-  ( ( ( A  +o  B
)  +o  A )  +o  B )  =  ( ( A  +o  B )  +o  ( A  +o  B ) )
22 nnm2 7729 . . . . . . . . 9  |-  ( ( A  +o  B )  e.  om  ->  (
( A  +o  B
)  .o  2o )  =  ( ( A  +o  B )  +o  ( A  +o  B
) ) )
2313, 22ax-mp 5 . . . . . . . 8  |-  ( ( A  +o  B )  .o  2o )  =  ( ( A  +o  B )  +o  ( A  +o  B ) )
2421, 23eqtr4i 2647 . . . . . . 7  |-  ( ( ( A  +o  B
)  +o  A )  +o  B )  =  ( ( A  +o  B )  .o  2o )
2519, 24sseqtri 3637 . . . . . 6  |-  B  C_  ( ( A  +o  B )  .o  2o )
26 2onn 7720 . . . . . . . 8  |-  2o  e.  om
2713, 26nnmcli 7695 . . . . . . 7  |-  ( ( A  +o  B )  .o  2o )  e. 
om
2813, 13nnmcli 7695 . . . . . . 7  |-  ( ( A  +o  B )  .o  ( A  +o  B ) )  e. 
om
29 nnawordi 7701 . . . . . . 7  |-  ( ( B  e.  om  /\  ( ( A  +o  B )  .o  2o )  e.  om  /\  (
( A  +o  B
)  .o  ( A  +o  B ) )  e.  om )  -> 
( B  C_  (
( A  +o  B
)  .o  2o )  ->  ( B  +o  ( ( A  +o  B )  .o  ( A  +o  B ) ) )  C_  ( (
( A  +o  B
)  .o  2o )  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) ) ) )
3011, 27, 28, 29mp3an 1424 . . . . . 6  |-  ( B 
C_  ( ( A  +o  B )  .o  2o )  ->  ( B  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) )  C_  ( ( ( A  +o  B )  .o  2o )  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) ) )
3125, 30ax-mp 5 . . . . 5  |-  ( B  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) )  C_  ( ( ( A  +o  B )  .o  2o )  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) )
32 nnacom 7697 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  e.  om  /\  B  e.  om )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( B  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) ) )
3328, 11, 32mp2an 708 . . . . 5  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( B  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) )
34 nnacom 7697 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  e.  om  /\  (
( A  +o  B
)  .o  2o )  e.  om )  -> 
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )  =  ( ( ( A  +o  B
)  .o  2o )  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) ) )
3528, 27, 34mp2an 708 . . . . 5  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  =  ( ( ( A  +o  B )  .o  2o )  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) )
3631, 33, 353sstr4i 3644 . . . 4  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  C_  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )
3713, 1omopthlem1 7735 . . . 4  |-  ( ( A  +o  B )  e.  C  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  e.  ( C  .o  C
) )
3828, 11nnacli 7694 . . . . . 6  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  e. 
om
3938nnoni 7072 . . . . 5  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  e.  On
402nnoni 7072 . . . . 5  |-  ( C  .o  C )  e.  On
41 ontr2 5772 . . . . 5  |-  ( ( ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  e.  On  /\  ( C  .o  C
)  e.  On )  ->  ( ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  C_  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )  /\  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  e.  ( C  .o  C
) )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( C  .o  C
) ) )
4239, 40, 41mp2an 708 . . . 4  |-  ( ( ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  C_  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  /\  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )  e.  ( C  .o  C ) )  ->  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( C  .o  C ) )
4336, 37, 42sylancr 695 . . 3  |-  ( ( A  +o  B )  e.  C  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( C  .o  C
) )
4410, 43sseldi 3601 . 2  |-  ( ( A  +o  B )  e.  C  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( ( C  .o  C )  +o  D
) )
458, 44nsyl3 133 1  |-  ( ( A  +o  B )  e.  C  ->  -.  ( ( C  .o  C )  +o  D
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   Oncon0 5723  (class class class)co 6650   omcom 7065   2oc2o 7554    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omopthi  7737
  Copyright terms: Public domain W3C validator