MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim2 Structured version   Visualization version   Unicode version

Theorem oelim2 7675
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oelim2  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem oelim2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limelon 5788 . . . . . 6  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 0ellim 5787 . . . . . . 7  |-  ( Lim 
B  ->  (/)  e.  B
)
32adantl 482 . . . . . 6  |-  ( ( B  e.  C  /\  Lim  B )  ->  (/)  e.  B
)
4 oe0m1 7601 . . . . . . 7  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
54biimpa 501 . . . . . 6  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
61, 3, 5syl2anc 693 . . . . 5  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( (/) 
^o  B )  =  (/) )
7 eldif 3584 . . . . . . . . 9  |-  ( x  e.  ( B  \  1o )  <->  ( x  e.  B  /\  -.  x  e.  1o ) )
8 limord 5784 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  Ord  B )
9 ordelon 5747 . . . . . . . . . . . 12  |-  ( ( Ord  B  /\  x  e.  B )  ->  x  e.  On )
108, 9sylan 488 . . . . . . . . . . 11  |-  ( ( Lim  B  /\  x  e.  B )  ->  x  e.  On )
11 on0eln0 5780 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  x  =/=  (/) ) )
12 el1o 7579 . . . . . . . . . . . . . 14  |-  ( x  e.  1o  <->  x  =  (/) )
1312necon3bbii 2841 . . . . . . . . . . . . 13  |-  ( -.  x  e.  1o  <->  x  =/=  (/) )
1411, 13syl6bbr 278 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  -.  x  e.  1o ) )
15 oe0m1 7601 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  ( (/)  ^o  x
)  =  (/) ) )
1615biimpd 219 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  ->  ( (/) 
^o  x )  =  (/) ) )
1714, 16sylbird 250 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( -.  x  e.  1o  ->  ( (/)  ^o  x
)  =  (/) ) )
1810, 17syl 17 . . . . . . . . . 10  |-  ( ( Lim  B  /\  x  e.  B )  ->  ( -.  x  e.  1o  ->  ( (/)  ^o  x
)  =  (/) ) )
1918impr 649 . . . . . . . . 9  |-  ( ( Lim  B  /\  (
x  e.  B  /\  -.  x  e.  1o ) )  ->  ( (/) 
^o  x )  =  (/) )
207, 19sylan2b 492 . . . . . . . 8  |-  ( ( Lim  B  /\  x  e.  ( B  \  1o ) )  ->  ( (/) 
^o  x )  =  (/) )
2120iuneq2dv 4542 . . . . . . 7  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  U_ x  e.  ( B  \  1o ) (/) )
22 df-1o 7560 . . . . . . . . . . 11  |-  1o  =  suc  (/)
23 limsuc 7049 . . . . . . . . . . . 12  |-  ( Lim 
B  ->  ( (/)  e.  B  <->  suc  (/)  e.  B ) )
242, 23mpbid 222 . . . . . . . . . . 11  |-  ( Lim 
B  ->  suc  (/)  e.  B
)
2522, 24syl5eqel 2705 . . . . . . . . . 10  |-  ( Lim 
B  ->  1o  e.  B )
26 1on 7567 . . . . . . . . . . 11  |-  1o  e.  On
2726onirri 5834 . . . . . . . . . 10  |-  -.  1o  e.  1o
2825, 27jctir 561 . . . . . . . . 9  |-  ( Lim 
B  ->  ( 1o  e.  B  /\  -.  1o  e.  1o ) )
29 eldif 3584 . . . . . . . . 9  |-  ( 1o  e.  ( B  \  1o )  <->  ( 1o  e.  B  /\  -.  1o  e.  1o ) )
3028, 29sylibr 224 . . . . . . . 8  |-  ( Lim 
B  ->  1o  e.  ( B  \  1o ) )
31 ne0i 3921 . . . . . . . 8  |-  ( 1o  e.  ( B  \  1o )  ->  ( B 
\  1o )  =/=  (/) )
32 iunconst 4529 . . . . . . . 8  |-  ( ( B  \  1o )  =/=  (/)  ->  U_ x  e.  ( B  \  1o ) (/)  =  (/) )
3330, 31, 323syl 18 . . . . . . 7  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) (/)  =  (/) )
3421, 33eqtrd 2656 . . . . . 6  |-  ( Lim 
B  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  (/) )
3534adantl 482 . . . . 5  |-  ( ( B  e.  C  /\  Lim  B )  ->  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
)  =  (/) )
366, 35eqtr4d 2659 . . . 4  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( (/) 
^o  B )  = 
U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
) )
37 oveq1 6657 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
38 oveq1 6657 . . . . . 6  |-  ( A  =  (/)  ->  ( A  ^o  x )  =  ( (/)  ^o  x
) )
3938iuneq2d 4547 . . . . 5  |-  ( A  =  (/)  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  =  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x ) )
4037, 39eqeq12d 2637 . . . 4  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  <->  ( (/)  ^o  B
)  =  U_ x  e.  ( B  \  1o ) ( (/)  ^o  x
) ) )
4136, 40syl5ibr 236 . . 3  |-  ( A  =  (/)  ->  ( ( B  e.  C  /\  Lim  B )  ->  ( A  ^o  B )  = 
U_ x  e.  ( B  \  1o ) ( A  ^o  x
) ) )
4241impcom 446 . 2  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  A  =  (/) )  -> 
( A  ^o  B
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
43 oelim 7614 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ y  e.  B  ( A  ^o  y ) )
44 limsuc 7049 . . . . . . . . . . . . 13  |-  ( Lim 
B  ->  ( y  e.  B  <->  suc  y  e.  B
) )
4544biimpa 501 . . . . . . . . . . . 12  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  e.  B )
46 nsuceq0 5805 . . . . . . . . . . . . 13  |-  suc  y  =/=  (/)
4746a1i 11 . . . . . . . . . . . 12  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  =/=  (/) )
48 dif1o 7580 . . . . . . . . . . . 12  |-  ( suc  y  e.  ( B 
\  1o )  <->  ( suc  y  e.  B  /\  suc  y  =/=  (/) ) )
4945, 47, 48sylanbrc 698 . . . . . . . . . . 11  |-  ( ( Lim  B  /\  y  e.  B )  ->  suc  y  e.  ( B  \  1o ) )
5049ex 450 . . . . . . . . . 10  |-  ( Lim 
B  ->  ( y  e.  B  ->  suc  y  e.  ( B  \  1o ) ) )
5150ad2antlr 763 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  suc  y  e.  ( B  \  1o ) ) )
52 sssucid 5802 . . . . . . . . . . 11  |-  y  C_  suc  y
53 ordelon 5747 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  B  /\  y  e.  B )  ->  y  e.  On )
548, 53sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  B  /\  y  e.  B )  ->  y  e.  On )
55 suceloni 7013 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  suc  y  e.  On )
5654, 55jccir 562 . . . . . . . . . . . . . . 15  |-  ( ( Lim  B  /\  y  e.  B )  ->  (
y  e.  On  /\  suc  y  e.  On ) )
57 id 22 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On )  ->  ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
58573expa 1265 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  On  /\ 
suc  y  e.  On )  /\  A  e.  On )  ->  ( y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
5958ancoms 469 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  ( y  e.  On  /\ 
suc  y  e.  On ) )  ->  (
y  e.  On  /\  suc  y  e.  On  /\  A  e.  On ) )
6056, 59sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( Lim  B  /\  y  e.  B ) )  -> 
( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On ) )
6160anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  y  e.  B )  ->  ( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On ) )
62 oewordi 7671 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  On  /\ 
suc  y  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( y  C_  suc  y  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) ) )
6361, 62sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  y  e.  B )  /\  (/)  e.  A
)  ->  ( y  C_ 
suc  y  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) ) )
6463an32s 846 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  (/)  e.  A
)  /\  y  e.  B )  ->  (
y  C_  suc  y  -> 
( A  ^o  y
)  C_  ( A  ^o  suc  y ) ) )
6552, 64mpi 20 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  Lim  B
)  /\  (/)  e.  A
)  /\  y  e.  B )  ->  ( A  ^o  y )  C_  ( A  ^o  suc  y
) )
6665ex 450 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  ( A  ^o  y
)  C_  ( A  ^o  suc  y ) ) )
6751, 66jcad 555 . . . . . . . 8  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  ( suc  y  e.  ( B  \  1o )  /\  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) ) )
68 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
6968sseq2d 3633 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( A  ^o  y )  C_  ( A  ^o  x )  <->  ( A  ^o  y )  C_  ( A  ^o  suc  y ) ) )
7069rspcev 3309 . . . . . . . 8  |-  ( ( suc  y  e.  ( B  \  1o )  /\  ( A  ^o  y )  C_  ( A  ^o  suc  y ) )  ->  E. x  e.  ( B  \  1o ) ( A  ^o  y )  C_  ( A  ^o  x ) )
7167, 70syl6 35 . . . . . . 7  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  -> 
( y  e.  B  ->  E. x  e.  ( B  \  1o ) ( A  ^o  y
)  C_  ( A  ^o  x ) ) )
7271ralrimiv 2965 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  A. y  e.  B  E. x  e.  ( B  \  1o ) ( A  ^o  y ) 
C_  ( A  ^o  x ) )
73 iunss2 4565 . . . . . 6  |-  ( A. y  e.  B  E. x  e.  ( B  \  1o ) ( A  ^o  y )  C_  ( A  ^o  x
)  ->  U_ y  e.  B  ( A  ^o  y )  C_  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
7472, 73syl 17 . . . . 5  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  C_  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
75 difss 3737 . . . . . . . 8  |-  ( B 
\  1o )  C_  B
76 iunss1 4532 . . . . . . . 8  |-  ( ( B  \  1o ) 
C_  B  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ x  e.  B  ( A  ^o  x ) )
7775, 76ax-mp 5 . . . . . . 7  |-  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ x  e.  B  ( A  ^o  x )
78 oveq2 6658 . . . . . . . 8  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
7978cbviunv 4559 . . . . . . 7  |-  U_ x  e.  B  ( A  ^o  x )  =  U_ y  e.  B  ( A  ^o  y )
8077, 79sseqtri 3637 . . . . . 6  |-  U_ x  e.  ( B  \  1o ) ( A  ^o  x )  C_  U_ y  e.  B  ( A  ^o  y )
8180a1i 11 . . . . 5  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) 
C_  U_ y  e.  B  ( A  ^o  y
) )
8274, 81eqssd 3620 . . . 4  |-  ( ( ( A  e.  On  /\ 
Lim  B )  /\  (/) 
e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8382adantlrl 756 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  U_ y  e.  B  ( A  ^o  y
)  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8443, 83eqtrd 2656 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
8542, 84oe0lem 7593 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ x  e.  ( B  \  1o ) ( A  ^o  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   (/)c0 3915   U_ciun 4520   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725  (class class class)co 6650   1oc1o 7553    ^o coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oelimcl  7680  oaabs2  7725  omabs  7727
  Copyright terms: Public domain W3C validator