| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnseq | Structured version Visualization version Unicode version | ||
| Description: There are no length |
| Ref | Expression |
|---|---|
| onnseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 6983 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 4 | 3 | eleq1d 2686 |
. . . . . . . . . 10
|
| 5 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 6 | 5 | eleq1d 2686 |
. . . . . . . . . 10
|
| 7 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 8 | 7 | eleq1d 2686 |
. . . . . . . . . 10
|
| 9 | simpl 473 |
. . . . . . . . . 10
| |
| 10 | suceq 5790 |
. . . . . . . . . . . . . . 15
| |
| 11 | 10 | fveq2d 6195 |
. . . . . . . . . . . . . 14
|
| 12 | fveq2 6191 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | eleq12d 2695 |
. . . . . . . . . . . . 13
|
| 14 | 13 | rspcv 3305 |
. . . . . . . . . . . 12
|
| 15 | onelon 5748 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | expcom 451 |
. . . . . . . . . . . 12
|
| 17 | 14, 16 | syl6 35 |
. . . . . . . . . . 11
|
| 18 | 17 | adantld 483 |
. . . . . . . . . 10
|
| 19 | 4, 6, 8, 9, 18 | finds2 7094 |
. . . . . . . . 9
|
| 20 | 19 | com12 32 |
. . . . . . . 8
|
| 21 | 20 | ralrimiv 2965 |
. . . . . . 7
|
| 22 | eqid 2622 |
. . . . . . . 8
| |
| 23 | 22 | fmpt 6381 |
. . . . . . 7
|
| 24 | 21, 23 | sylib 208 |
. . . . . 6
|
| 25 | frn 6053 |
. . . . . 6
| |
| 26 | 24, 25 | syl 17 |
. . . . 5
|
| 27 | peano1 7085 |
. . . . . . . 8
| |
| 28 | fdm 6051 |
. . . . . . . . 9
| |
| 29 | 24, 28 | syl 17 |
. . . . . . . 8
|
| 30 | 27, 29 | syl5eleqr 2708 |
. . . . . . 7
|
| 31 | ne0i 3921 |
. . . . . . 7
| |
| 32 | 30, 31 | syl 17 |
. . . . . 6
|
| 33 | dm0rn0 5342 |
. . . . . . 7
| |
| 34 | 33 | necon3bii 2846 |
. . . . . 6
|
| 35 | 32, 34 | sylib 208 |
. . . . 5
|
| 36 | wefrc 5108 |
. . . . 5
| |
| 37 | 2, 26, 35, 36 | syl3anc 1326 |
. . . 4
|
| 38 | fvex 6201 |
. . . . . 6
| |
| 39 | 38 | rgenw 2924 |
. . . . 5
|
| 40 | fveq2 6191 |
. . . . . . 7
| |
| 41 | 40 | cbvmptv 4750 |
. . . . . 6
|
| 42 | ineq2 3808 |
. . . . . . 7
| |
| 43 | 42 | eqeq1d 2624 |
. . . . . 6
|
| 44 | 41, 43 | rexrnmpt 6369 |
. . . . 5
|
| 45 | 39, 44 | ax-mp 5 |
. . . 4
|
| 46 | 37, 45 | sylib 208 |
. . 3
|
| 47 | peano2 7086 |
. . . . . . . . 9
| |
| 48 | 47 | adantl 482 |
. . . . . . . 8
|
| 49 | eqid 2622 |
. . . . . . . 8
| |
| 50 | fveq2 6191 |
. . . . . . . . . 10
| |
| 51 | 50 | eqeq2d 2632 |
. . . . . . . . 9
|
| 52 | 51 | rspcev 3309 |
. . . . . . . 8
|
| 53 | 48, 49, 52 | sylancl 694 |
. . . . . . 7
|
| 54 | fvex 6201 |
. . . . . . . 8
| |
| 55 | 22 | elrnmpt 5372 |
. . . . . . . 8
|
| 56 | 54, 55 | ax-mp 5 |
. . . . . . 7
|
| 57 | 53, 56 | sylibr 224 |
. . . . . 6
|
| 58 | suceq 5790 |
. . . . . . . . . 10
| |
| 59 | 58 | fveq2d 6195 |
. . . . . . . . 9
|
| 60 | fveq2 6191 |
. . . . . . . . 9
| |
| 61 | 59, 60 | eleq12d 2695 |
. . . . . . . 8
|
| 62 | 61 | rspccva 3308 |
. . . . . . 7
|
| 63 | 62 | adantll 750 |
. . . . . 6
|
| 64 | inelcm 4032 |
. . . . . 6
| |
| 65 | 57, 63, 64 | syl2anc 693 |
. . . . 5
|
| 66 | 65 | neneqd 2799 |
. . . 4
|
| 67 | 66 | nrexdv 3001 |
. . 3
|
| 68 | 46, 67 | pm2.65da 600 |
. 2
|
| 69 | rexnal 2995 |
. 2
| |
| 70 | 68, 69 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-om 7066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |