MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onzsl Structured version   Visualization version   Unicode version

Theorem onzsl 7046
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onzsl  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
Distinct variable group:    x, A

Proof of Theorem onzsl
StepHypRef Expression
1 elex 3212 . . 3  |-  ( A  e.  On  ->  A  e.  _V )
2 eloni 5733 . . 3  |-  ( A  e.  On  ->  Ord  A )
3 ordzsl 7045 . . . 4  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
4 3mix1 1230 . . . . . 6  |-  ( A  =  (/)  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
54adantl 482 . . . . 5  |-  ( ( A  e.  _V  /\  A  =  (/) )  -> 
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )
6 3mix2 1231 . . . . . 6  |-  ( E. x  e.  On  A  =  suc  x  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
76adantl 482 . . . . 5  |-  ( ( A  e.  _V  /\  E. x  e.  On  A  =  suc  x )  -> 
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )
8 3mix3 1232 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
95, 7, 83jaodan 1394 . . . 4  |-  ( ( A  e.  _V  /\  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
103, 9sylan2b 492 . . 3  |-  ( ( A  e.  _V  /\  Ord  A )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
111, 2, 10syl2anc 693 . 2  |-  ( A  e.  On  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
12 0elon 5778 . . . 4  |-  (/)  e.  On
13 eleq1 2689 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  On  <->  (/)  e.  On ) )
1412, 13mpbiri 248 . . 3  |-  ( A  =  (/)  ->  A  e.  On )
15 suceloni 7013 . . . . 5  |-  ( x  e.  On  ->  suc  x  e.  On )
16 eleq1 2689 . . . . 5  |-  ( A  =  suc  x  -> 
( A  e.  On  <->  suc  x  e.  On ) )
1715, 16syl5ibrcom 237 . . . 4  |-  ( x  e.  On  ->  ( A  =  suc  x  ->  A  e.  On )
)
1817rexlimiv 3027 . . 3  |-  ( E. x  e.  On  A  =  suc  x  ->  A  e.  On )
19 limelon 5788 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
2014, 18, 193jaoi 1391 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) )  ->  A  e.  On )
2111, 20impbii 199 1  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   (/)c0 3915   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  oawordeulem  7634  r1pwss  8647  r1val1  8649  pwcfsdom  9405  winalim2  9518  rankcf  9599  dfrdg4  32058
  Copyright terms: Public domain W3C validator