MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Visualization version   Unicode version

Theorem winalim2 9518
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2  |-  ( ( A  e.  InaccW  /\  A  =/=  om )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) )
Distinct variable group:    x, A

Proof of Theorem winalim2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 9514 . . . 4  |-  ( A  e.  InaccW  ->  ( card `  A )  =  A )
2 winainf 9516 . . . . 5  |-  ( A  e.  InaccW  ->  om  C_  A
)
3 cardalephex 8913 . . . . 5  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
42, 3syl 17 . . . 4  |-  ( A  e.  InaccW  ->  (
( card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
51, 4mpbid 222 . . 3  |-  ( A  e.  InaccW  ->  E. x  e.  On  A  =  (
aleph `  x ) )
65adantr 481 . 2  |-  ( ( A  e.  InaccW  /\  A  =/=  om )  ->  E. x  e.  On  A  =  ( aleph `  x ) )
7 df-rex 2918 . . 3  |-  ( E. x  e.  On  A  =  ( aleph `  x
)  <->  E. x ( x  e.  On  /\  A  =  ( aleph `  x
) ) )
8 simprr 796 . . . . . . 7  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  A  =  ( aleph `  x
) )
98eqcomd 2628 . . . . . 6  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  ( aleph `  x )  =  A )
10 simprl 794 . . . . . . . 8  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  x  e.  On )
11 onzsl 7046 . . . . . . . 8  |-  ( x  e.  On  <->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y  \/  ( x  e.  _V  /\  Lim  x
) ) )
1210, 11sylib 208 . . . . . . 7  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y  \/  (
x  e.  _V  /\  Lim  x ) ) )
13 simplr 792 . . . . . . . . . 10  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  A  =/=  om )
14 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
15 aleph0 8889 . . . . . . . . . . . . . 14  |-  ( aleph `  (/) )  =  om
1614, 15syl6eq 2672 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( aleph `  x )  =  om )
17 eqtr 2641 . . . . . . . . . . . . 13  |-  ( ( A  =  ( aleph `  x )  /\  ( aleph `  x )  =  om )  ->  A  =  om )
1816, 17sylan2 491 . . . . . . . . . . . 12  |-  ( ( A  =  ( aleph `  x )  /\  x  =  (/) )  ->  A  =  om )
1918ex 450 . . . . . . . . . . 11  |-  ( A  =  ( aleph `  x
)  ->  ( x  =  (/)  ->  A  =  om ) )
2019necon3ad 2807 . . . . . . . . . 10  |-  ( A  =  ( aleph `  x
)  ->  ( A  =/=  om  ->  -.  x  =  (/) ) )
218, 13, 20sylc 65 . . . . . . . . 9  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  -.  x  =  (/) )
2221pm2.21d 118 . . . . . . . 8  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
x  =  (/)  ->  Lim  x ) )
23 suceloni 7013 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  suc  y  e.  On )
24 vex 3203 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
2524sucid 5804 . . . . . . . . . . . . . . . 16  |-  y  e. 
suc  y
26 alephord2i 8900 . . . . . . . . . . . . . . . 16  |-  ( suc  y  e.  On  ->  ( y  e.  suc  y  ->  ( aleph `  y )  e.  ( aleph `  suc  y ) ) )
2723, 25, 26mpisyl 21 . . . . . . . . . . . . . . 15  |-  ( y  e.  On  ->  ( aleph `  y )  e.  ( aleph `  suc  y ) )
2827ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  y
)  e.  ( aleph ` 
suc  y ) )
29 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A  =  (
aleph `  x ) )
30 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
3130ad2antll 765 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  x
)  =  ( aleph ` 
suc  y ) )
3229, 31eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A  =  (
aleph `  suc  y ) )
3328, 32eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  y
)  e.  A )
34 elwina 9508 . . . . . . . . . . . . . . 15  |-  ( A  e.  InaccW  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. z  e.  A  E. w  e.  A  z  ~<  w
) )
3534simp3bi 1078 . . . . . . . . . . . . . 14  |-  ( A  e.  InaccW  ->  A. z  e.  A  E. w  e.  A  z  ~<  w )
3635ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A. z  e.  A  E. w  e.  A  z  ~<  w )
37 breq1 4656 . . . . . . . . . . . . . . 15  |-  ( z  =  ( aleph `  y
)  ->  ( z  ~<  w  <->  ( aleph `  y
)  ~<  w ) )
3837rexbidv 3052 . . . . . . . . . . . . . 14  |-  ( z  =  ( aleph `  y
)  ->  ( E. w  e.  A  z  ~<  w  <->  E. w  e.  A  ( aleph `  y )  ~<  w ) )
3938rspcva 3307 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  y )  e.  A  /\  A. z  e.  A  E. w  e.  A  z  ~<  w )  ->  E. w  e.  A  ( aleph `  y )  ~<  w
)
4033, 36, 39syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  E. w  e.  A  ( aleph `  y )  ~<  w )
4140expr 643 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  ( x  =  suc  y  ->  E. w  e.  A  ( aleph `  y )  ~<  w
) )
42 iscard 8801 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. w  e.  A  w  ~<  A ) )
4342simprbi 480 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  A )  =  A  ->  A. w  e.  A  w  ~<  A )
44 rsp 2929 . . . . . . . . . . . . . . . . . 18  |-  ( A. w  e.  A  w  ~<  A  ->  ( w  e.  A  ->  w  ~<  A ) )
451, 43, 443syl 18 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  InaccW  ->  (
w  e.  A  ->  w  ~<  A ) )
4645ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  w  ~<  A ) )
4732breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  ~<  A  <-> 
w  ~<  ( aleph `  suc  y ) ) )
4846, 47sylibd 229 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  w  ~<  (
aleph `  suc  y ) ) )
49 alephnbtwn2 8895 . . . . . . . . . . . . . . . 16  |-  -.  (
( aleph `  y )  ~<  w  /\  w  ~<  (
aleph `  suc  y ) )
50 pm3.21 464 . . . . . . . . . . . . . . . 16  |-  ( w 
~<  ( aleph `  suc  y )  ->  ( ( aleph `  y )  ~<  w  ->  ( ( aleph `  y
)  ~<  w  /\  w  ~<  ( aleph `  suc  y ) ) ) )
5149, 50mtoi 190 . . . . . . . . . . . . . . 15  |-  ( w 
~<  ( aleph `  suc  y )  ->  -.  ( aleph `  y )  ~<  w
)
5248, 51syl6 35 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  -.  ( aleph `  y )  ~<  w ) )
5352imp 445 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  /\  w  e.  A
)  ->  -.  ( aleph `  y )  ~<  w )
5453nrexdv 3001 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  -.  E. w  e.  A  ( aleph `  y )  ~<  w
)
5554expr 643 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  ( x  =  suc  y  ->  -.  E. w  e.  A  (
aleph `  y )  ~<  w ) )
5641, 55pm2.65d 187 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
InaccW  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  -.  x  =  suc  y )
5756nrexdv 3001 . . . . . . . . 9  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  -.  E. y  e.  On  x  =  suc  y )
5857pm2.21d 118 . . . . . . . 8  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  ( E. y  e.  On  x  =  suc  y  ->  Lim  x ) )
59 simpr 477 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  Lim  x )
6059a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( x  e.  _V  /\ 
Lim  x )  ->  Lim  x ) )
6122, 58, 603jaod 1392 . . . . . . 7  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y  \/  ( x  e.  _V  /\ 
Lim  x ) )  ->  Lim  x )
)
6212, 61mpd 15 . . . . . 6  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  Lim  x )
639, 62jca 554 . . . . 5  |-  ( ( ( A  e.  InaccW  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( aleph `  x )  =  A  /\  Lim  x
) )
6463ex 450 . . . 4  |-  ( ( A  e.  InaccW  /\  A  =/=  om )  -> 
( ( x  e.  On  /\  A  =  ( aleph `  x )
)  ->  ( ( aleph `  x )  =  A  /\  Lim  x
) ) )
6564eximdv 1846 . . 3  |-  ( ( A  e.  InaccW  /\  A  =/=  om )  -> 
( E. x ( x  e.  On  /\  A  =  ( aleph `  x ) )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) ) )
667, 65syl5bi 232 . 2  |-  ( ( A  e.  InaccW  /\  A  =/=  om )  -> 
( E. x  e.  On  A  =  (
aleph `  x )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) ) )
676, 66mpd 15 1  |-  ( ( A  e.  InaccW  /\  A  =/=  om )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   Oncon0 5723   Lim wlim 5724   suc csuc 5725   ` cfv 5888   omcom 7065    ~< csdm 7954   cardccrd 8761   alephcale 8762   cfccf 8763   InaccWcwina 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cf 8767  df-wina 9506
This theorem is referenced by:  winafp  9519
  Copyright terms: Public domain W3C validator