MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Structured version   Visualization version   Unicode version

Theorem rankcf 9599
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 
A form a cofinal map into  ( rank `  A
). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf  |-  -.  A  ~<  ( cf `  ( rank `  A ) )

Proof of Theorem rankcf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 8658 . . 3  |-  ( rank `  A )  e.  On
2 onzsl 7046 . . 3  |-  ( (
rank `  A )  e.  On  <->  ( ( rank `  A )  =  (/)  \/ 
E. x  e.  On  ( rank `  A )  =  suc  x  \/  (
( rank `  A )  e.  _V  /\  Lim  ( rank `  A ) ) ) )
31, 2mpbi 220 . 2  |-  ( (
rank `  A )  =  (/)  \/  E. x  e.  On  ( rank `  A
)  =  suc  x  \/  ( ( rank `  A
)  e.  _V  /\  Lim  ( rank `  A
) ) )
4 sdom0 8092 . . . 4  |-  -.  A  ~< 
(/)
5 fveq2 6191 . . . . . 6  |-  ( (
rank `  A )  =  (/)  ->  ( cf `  ( rank `  A
) )  =  ( cf `  (/) ) )
6 cf0 9073 . . . . . 6  |-  ( cf `  (/) )  =  (/)
75, 6syl6eq 2672 . . . . 5  |-  ( (
rank `  A )  =  (/)  ->  ( cf `  ( rank `  A
) )  =  (/) )
87breq2d 4665 . . . 4  |-  ( (
rank `  A )  =  (/)  ->  ( A  ~<  ( cf `  ( rank `  A ) )  <-> 
A  ~<  (/) ) )
94, 8mtbiri 317 . . 3  |-  ( (
rank `  A )  =  (/)  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
10 fveq2 6191 . . . . . . 7  |-  ( (
rank `  A )  =  suc  x  ->  ( cf `  ( rank `  A
) )  =  ( cf `  suc  x
) )
11 cfsuc 9079 . . . . . . 7  |-  ( x  e.  On  ->  ( cf `  suc  x )  =  1o )
1210, 11sylan9eqr 2678 . . . . . 6  |-  ( ( x  e.  On  /\  ( rank `  A )  =  suc  x )  -> 
( cf `  ( rank `  A ) )  =  1o )
13 nsuceq0 5805 . . . . . . . . 9  |-  suc  x  =/=  (/)
14 neeq1 2856 . . . . . . . . 9  |-  ( (
rank `  A )  =  suc  x  ->  (
( rank `  A )  =/=  (/)  <->  suc  x  =/=  (/) ) )
1513, 14mpbiri 248 . . . . . . . 8  |-  ( (
rank `  A )  =  suc  x  ->  ( rank `  A )  =/=  (/) )
16 fveq2 6191 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( rank `  A )  =  (
rank `  (/) ) )
17 0elon 5778 . . . . . . . . . . . . 13  |-  (/)  e.  On
18 r1fnon 8630 . . . . . . . . . . . . . 14  |-  R1  Fn  On
19 fndm 5990 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  dom  R1  =  On )
2018, 19ax-mp 5 . . . . . . . . . . . . 13  |-  dom  R1  =  On
2117, 20eleqtrri 2700 . . . . . . . . . . . 12  |-  (/)  e.  dom  R1
22 rankonid 8692 . . . . . . . . . . . 12  |-  ( (/)  e.  dom  R1  <->  ( rank `  (/) )  =  (/) )
2321, 22mpbi 220 . . . . . . . . . . 11  |-  ( rank `  (/) )  =  (/)
2416, 23syl6eq 2672 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( rank `  A )  =  (/) )
2524necon3i 2826 . . . . . . . . 9  |-  ( (
rank `  A )  =/=  (/)  ->  A  =/=  (/) )
26 rankvaln 8662 . . . . . . . . . . 11  |-  ( -.  A  e.  U. ( R1 " On )  -> 
( rank `  A )  =  (/) )
2726necon1ai 2821 . . . . . . . . . 10  |-  ( (
rank `  A )  =/=  (/)  ->  A  e.  U. ( R1 " On ) )
28 breq2 4657 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( 1o 
~<_  y  <->  1o  ~<_  A )
)
29 neeq1 2856 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  =/=  (/)  <->  A  =/=  (/) ) )
30 0sdom1dom 8158 . . . . . . . . . . . 12  |-  ( (/)  ~< 
y  <->  1o  ~<_  y )
31 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
32310sdom 8091 . . . . . . . . . . . 12  |-  ( (/)  ~< 
y  <->  y  =/=  (/) )
3330, 32bitr3i 266 . . . . . . . . . . 11  |-  ( 1o  ~<_  y  <->  y  =/=  (/) )
3428, 29, 33vtoclbg 3267 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( 1o  ~<_  A  <->  A  =/=  (/) ) )
3527, 34syl 17 . . . . . . . . 9  |-  ( (
rank `  A )  =/=  (/)  ->  ( 1o  ~<_  A 
<->  A  =/=  (/) ) )
3625, 35mpbird 247 . . . . . . . 8  |-  ( (
rank `  A )  =/=  (/)  ->  1o  ~<_  A )
3715, 36syl 17 . . . . . . 7  |-  ( (
rank `  A )  =  suc  x  ->  1o  ~<_  A )
3837adantl 482 . . . . . 6  |-  ( ( x  e.  On  /\  ( rank `  A )  =  suc  x )  ->  1o 
~<_  A )
3912, 38eqbrtrd 4675 . . . . 5  |-  ( ( x  e.  On  /\  ( rank `  A )  =  suc  x )  -> 
( cf `  ( rank `  A ) )  ~<_  A )
4039rexlimiva 3028 . . . 4  |-  ( E. x  e.  On  ( rank `  A )  =  suc  x  ->  ( cf `  ( rank `  A
) )  ~<_  A )
41 domnsym 8086 . . . 4  |-  ( ( cf `  ( rank `  A ) )  ~<_  A  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
4240, 41syl 17 . . 3  |-  ( E. x  e.  On  ( rank `  A )  =  suc  x  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
43 nlim0 5783 . . . . . . . . . . . . . . . . 17  |-  -.  Lim  (/)
44 limeq 5735 . . . . . . . . . . . . . . . . 17  |-  ( (
rank `  A )  =  (/)  ->  ( Lim  ( rank `  A )  <->  Lim  (/) ) )
4543, 44mtbiri 317 . . . . . . . . . . . . . . . 16  |-  ( (
rank `  A )  =  (/)  ->  -.  Lim  ( rank `  A ) )
4626, 45syl 17 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  U. ( R1 " On )  ->  -.  Lim  ( rank `  A
) )
4746con4i 113 . . . . . . . . . . . . . 14  |-  ( Lim  ( rank `  A
)  ->  A  e.  U. ( R1 " On ) )
48 r1elssi 8668 . . . . . . . . . . . . . 14  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
4947, 48syl 17 . . . . . . . . . . . . 13  |-  ( Lim  ( rank `  A
)  ->  A  C_  U. ( R1 " On ) )
5049sselda 3603 . . . . . . . . . . . 12  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  x  e.  U. ( R1 " On ) )
51 ranksnb 8690 . . . . . . . . . . . 12  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  { x } )  =  suc  ( rank `  x )
)
5250, 51syl 17 . . . . . . . . . . 11  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  ( rank `  { x }
)  =  suc  ( rank `  x ) )
53 rankelb 8687 . . . . . . . . . . . . . 14  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( rank `  A ) ) )
5447, 53syl 17 . . . . . . . . . . . . 13  |-  ( Lim  ( rank `  A
)  ->  ( x  e.  A  ->  ( rank `  x )  e.  (
rank `  A )
) )
55 limsuc 7049 . . . . . . . . . . . . 13  |-  ( Lim  ( rank `  A
)  ->  ( ( rank `  x )  e.  ( rank `  A
)  <->  suc  ( rank `  x
)  e.  ( rank `  A ) ) )
5654, 55sylibd 229 . . . . . . . . . . . 12  |-  ( Lim  ( rank `  A
)  ->  ( x  e.  A  ->  suc  ( rank `  x )  e.  ( rank `  A
) ) )
5756imp 445 . . . . . . . . . . 11  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  suc  ( rank `  x )  e.  ( rank `  A
) )
5852, 57eqeltrd 2701 . . . . . . . . . 10  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  ( rank `  { x }
)  e.  ( rank `  A ) )
59 eleq1a 2696 . . . . . . . . . 10  |-  ( (
rank `  { x } )  e.  (
rank `  A )  ->  ( w  =  (
rank `  { x } )  ->  w  e.  ( rank `  A
) ) )
6058, 59syl 17 . . . . . . . . 9  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  (
w  =  ( rank `  { x } )  ->  w  e.  (
rank `  A )
) )
6160rexlimdva 3031 . . . . . . . 8  |-  ( Lim  ( rank `  A
)  ->  ( E. x  e.  A  w  =  ( rank `  {
x } )  ->  w  e.  ( rank `  A ) ) )
6261abssdv 3676 . . . . . . 7  |-  ( Lim  ( rank `  A
)  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  C_  ( rank `  A ) )
63 snex 4908 . . . . . . . . . . . . 13  |-  { x }  e.  _V
6463dfiun2 4554 . . . . . . . . . . . 12  |-  U_ x  e.  A  { x }  =  U. { y  |  E. x  e.  A  y  =  {
x } }
65 iunid 4575 . . . . . . . . . . . 12  |-  U_ x  e.  A  { x }  =  A
6664, 65eqtr3i 2646 . . . . . . . . . . 11  |-  U. {
y  |  E. x  e.  A  y  =  { x } }  =  A
6766fveq2i 6194 . . . . . . . . . 10  |-  ( rank `  U. { y  |  E. x  e.  A  y  =  { x } } )  =  (
rank `  A )
6848sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  A )  ->  x  e.  U. ( R1 " On ) )
69 snwf 8672 . . . . . . . . . . . . . . 15  |-  ( x  e.  U. ( R1
" On )  ->  { x }  e.  U. ( R1 " On ) )
70 eleq1a 2696 . . . . . . . . . . . . . . 15  |-  ( { x }  e.  U. ( R1 " On )  ->  ( y  =  { x }  ->  y  e.  U. ( R1
" On ) ) )
7168, 69, 703syl 18 . . . . . . . . . . . . . 14  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  A )  ->  ( y  =  {
x }  ->  y  e.  U. ( R1 " On ) ) )
7271rexlimdva 3031 . . . . . . . . . . . . 13  |-  ( A  e.  U. ( R1
" On )  -> 
( E. x  e.  A  y  =  {
x }  ->  y  e.  U. ( R1 " On ) ) )
7372abssdv 3676 . . . . . . . . . . . 12  |-  ( A  e.  U. ( R1
" On )  ->  { y  |  E. x  e.  A  y  =  { x } }  C_ 
U. ( R1 " On ) )
74 abrexexg 7140 . . . . . . . . . . . . 13  |-  ( A  e.  U. ( R1
" On )  ->  { y  |  E. x  e.  A  y  =  { x } }  e.  _V )
75 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( z  =  { y  |  E. x  e.  A  y  =  { x } }  ->  ( z  e.  U. ( R1
" On )  <->  { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On ) ) )
76 sseq1 3626 . . . . . . . . . . . . . 14  |-  ( z  =  { y  |  E. x  e.  A  y  =  { x } }  ->  ( z 
C_  U. ( R1 " On )  <->  { y  |  E. x  e.  A  y  =  { x } }  C_ 
U. ( R1 " On ) ) )
77 vex 3203 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
7877r1elss 8669 . . . . . . . . . . . . . 14  |-  ( z  e.  U. ( R1
" On )  <->  z  C_  U. ( R1 " On ) )
7975, 76, 78vtoclbg 3267 . . . . . . . . . . . . 13  |-  ( { y  |  E. x  e.  A  y  =  { x } }  e.  _V  ->  ( {
y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On )  <->  { y  |  E. x  e.  A  y  =  { x } }  C_ 
U. ( R1 " On ) ) )
8074, 79syl 17 . . . . . . . . . . . 12  |-  ( A  e.  U. ( R1
" On )  -> 
( { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On )  <->  { y  |  E. x  e.  A  y  =  { x } }  C_  U. ( R1 " On ) ) )
8173, 80mpbird 247 . . . . . . . . . . 11  |-  ( A  e.  U. ( R1
" On )  ->  { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On ) )
82 rankuni2b 8716 . . . . . . . . . . 11  |-  ( { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On )  ->  ( rank `  U. { y  |  E. x  e.  A  y  =  { x } } )  =  U_ z  e.  { y  |  E. x  e.  A  y  =  { x } }  ( rank `  z ) )
8381, 82syl 17 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. { y  |  E. x  e.  A  y  =  {
x } } )  =  U_ z  e. 
{ y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )
)
8467, 83syl5eqr 2670 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  U_ z  e.  {
y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )
)
85 fvex 6201 . . . . . . . . . . 11  |-  ( rank `  z )  e.  _V
8685dfiun2 4554 . . . . . . . . . 10  |-  U_ z  e.  { y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )  =  U. { w  |  E. z  e.  {
y  |  E. x  e.  A  y  =  { x } }
w  =  ( rank `  z ) }
87 fveq2 6191 . . . . . . . . . . . 12  |-  ( z  =  { x }  ->  ( rank `  z
)  =  ( rank `  { x } ) )
8863, 87abrexco 6502 . . . . . . . . . . 11  |-  { w  |  E. z  e.  {
y  |  E. x  e.  A  y  =  { x } }
w  =  ( rank `  z ) }  =  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }
8988unieqi 4445 . . . . . . . . . 10  |-  U. {
w  |  E. z  e.  { y  |  E. x  e.  A  y  =  { x } }
w  =  ( rank `  z ) }  =  U. { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }
9086, 89eqtri 2644 . . . . . . . . 9  |-  U_ z  e.  { y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )  =  U. { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }
9184, 90syl6req 2673 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  ->  U. { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  =  ( rank `  A
) )
9247, 91syl 17 . . . . . . 7  |-  ( Lim  ( rank `  A
)  ->  U. { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  =  ( rank `  A ) )
93 fvex 6201 . . . . . . . 8  |-  ( rank `  A )  e.  _V
9493cfslb 9088 . . . . . . 7  |-  ( ( Lim  ( rank `  A
)  /\  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  C_  ( rank `  A )  /\  U. { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  =  ( rank `  A
) )  ->  ( cf `  ( rank `  A
) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) } )
9562, 92, 94mpd3an23 1426 . . . . . 6  |-  ( Lim  ( rank `  A
)  ->  ( cf `  ( rank `  A
) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) } )
96 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( rank `  y )  =  ( rank `  A
) )
9796fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  A  ->  ( cf `  ( rank `  y
) )  =  ( cf `  ( rank `  A ) ) )
98 breq12 4658 . . . . . . . . . 10  |-  ( ( y  =  A  /\  ( cf `  ( rank `  y ) )  =  ( cf `  ( rank `  A ) ) )  ->  ( y  ~<  ( cf `  ( rank `  y ) )  <-> 
A  ~<  ( cf `  ( rank `  A ) ) ) )
9997, 98mpdan 702 . . . . . . . . 9  |-  ( y  =  A  ->  (
y  ~<  ( cf `  ( rank `  y ) )  <-> 
A  ~<  ( cf `  ( rank `  A ) ) ) )
100 rexeq 3139 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( E. x  e.  y  w  =  ( rank `  { x } )  <->  E. x  e.  A  w  =  ( rank `  { x } ) ) )
101100abbidv 2741 . . . . . . . . . 10  |-  ( y  =  A  ->  { w  |  E. x  e.  y  w  =  ( rank `  { x } ) }  =  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) } )
102 breq12 4658 . . . . . . . . . 10  |-  ( ( { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }  =  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  /\  y  =  A )  ->  ( { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }  ~<_  y  <->  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  ~<_  A ) )
103101, 102mpancom 703 . . . . . . . . 9  |-  ( y  =  A  ->  ( { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }  ~<_  y  <->  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  ~<_  A ) )
10499, 103imbi12d 334 . . . . . . . 8  |-  ( y  =  A  ->  (
( y  ~<  ( cf `  ( rank `  y
) )  ->  { w  |  E. x  e.  y  w  =  ( rank `  { x } ) }  ~<_  y )  <->  ( A  ~<  ( cf `  ( rank `  A ) )  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A ) ) )
105 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  y  |->  ( rank `  { x } ) )  =  ( x  e.  y  |->  ( rank `  { x } ) )
106105rnmpt 5371 . . . . . . . . 9  |-  ran  (
x  e.  y  |->  (
rank `  { x } ) )  =  { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }
107 cfon 9077 . . . . . . . . . . 11  |-  ( cf `  ( rank `  y
) )  e.  On
108 sdomdom 7983 . . . . . . . . . . 11  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  y  ~<_  ( cf `  ( rank `  y
) ) )
109 ondomen 8860 . . . . . . . . . . 11  |-  ( ( ( cf `  ( rank `  y ) )  e.  On  /\  y  ~<_  ( cf `  ( rank `  y ) ) )  ->  y  e.  dom  card )
110107, 108, 109sylancr 695 . . . . . . . . . 10  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  y  e.  dom  card )
111 fvex 6201 . . . . . . . . . . . 12  |-  ( rank `  { x } )  e.  _V
112111, 105fnmpti 6022 . . . . . . . . . . 11  |-  ( x  e.  y  |->  ( rank `  { x } ) )  Fn  y
113 dffn4 6121 . . . . . . . . . . 11  |-  ( ( x  e.  y  |->  (
rank `  { x } ) )  Fn  y  <->  ( x  e.  y  |->  ( rank `  {
x } ) ) : y -onto-> ran  (
x  e.  y  |->  (
rank `  { x } ) ) )
114112, 113mpbi 220 . . . . . . . . . 10  |-  ( x  e.  y  |->  ( rank `  { x } ) ) : y -onto-> ran  ( x  e.  y 
|->  ( rank `  {
x } ) )
115 fodomnum 8880 . . . . . . . . . 10  |-  ( y  e.  dom  card  ->  ( ( x  e.  y 
|->  ( rank `  {
x } ) ) : y -onto-> ran  (
x  e.  y  |->  (
rank `  { x } ) )  ->  ran  ( x  e.  y 
|->  ( rank `  {
x } ) )  ~<_  y ) )
116110, 114, 115mpisyl 21 . . . . . . . . 9  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  ran  ( x  e.  y  |->  ( rank `  { x } ) )  ~<_  y )
117106, 116syl5eqbrr 4689 . . . . . . . 8  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  { w  |  E. x  e.  y  w  =  ( rank `  { x } ) }  ~<_  y )
118104, 117vtoclg 3266 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  -> 
( A  ~<  ( cf `  ( rank `  A
) )  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A ) )
11947, 118syl 17 . . . . . 6  |-  ( Lim  ( rank `  A
)  ->  ( A  ~<  ( cf `  ( rank `  A ) )  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A ) )
120 domtr 8009 . . . . . . 7  |-  ( ( ( cf `  ( rank `  A ) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  /\  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A )  -> 
( cf `  ( rank `  A ) )  ~<_  A )
121120, 41syl 17 . . . . . 6  |-  ( ( ( cf `  ( rank `  A ) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  /\  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A )  ->  -.  A  ~<  ( cf `  ( rank `  A
) ) )
12295, 119, 121syl6an 568 . . . . 5  |-  ( Lim  ( rank `  A
)  ->  ( A  ~<  ( cf `  ( rank `  A ) )  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) ) )
123122pm2.01d 181 . . . 4  |-  ( Lim  ( rank `  A
)  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
124123adantl 482 . . 3  |-  ( ( ( rank `  A
)  e.  _V  /\  Lim  ( rank `  A
) )  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
1259, 42, 1243jaoi 1391 . 2  |-  ( ( ( rank `  A
)  =  (/)  \/  E. x  e.  On  ( rank `  A )  =  suc  x  \/  (
( rank `  A )  e.  _V  /\  Lim  ( rank `  A ) ) )  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
1263, 125ax-mp 5 1  |-  -.  A  ~<  ( cf `  ( rank `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723   Lim wlim 5724   suc csuc 5725    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888   1oc1o 7553    ~<_ cdom 7953    ~< csdm 7954   R1cr1 8625   rankcrnk 8626   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-r1 8627  df-rank 8628  df-card 8765  df-cf 8767  df-acn 8768
This theorem is referenced by:  inatsk  9600  grur1  9642
  Copyright terms: Public domain W3C validator