| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 |
|
| ordtypelem.2 |
|
| ordtypelem.3 |
|
| ordtypelem.5 |
|
| ordtypelem.6 |
|
| ordtypelem.7 |
|
| ordtypelem.8 |
|
| Ref | Expression |
|---|---|
| ordtypelem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3834 |
. . . . 5
| |
| 2 | simpr 477 |
. . . . 5
| |
| 3 | 1, 2 | sseldi 3601 |
. . . 4
|
| 4 | ordtypelem.1 |
. . . . 5
| |
| 5 | 4 | tfr2a 7491 |
. . . 4
|
| 6 | 3, 5 | syl 17 |
. . 3
|
| 7 | 4 | tfr1a 7490 |
. . . . . . . . 9
|
| 8 | 7 | simpri 478 |
. . . . . . . 8
|
| 9 | limord 5784 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | ordelord 5745 |
. . . . . . 7
| |
| 12 | 10, 3, 11 | sylancr 695 |
. . . . . 6
|
| 13 | 4 | tfr2b 7492 |
. . . . . 6
|
| 14 | 12, 13 | syl 17 |
. . . . 5
|
| 15 | 3, 14 | mpbid 222 |
. . . 4
|
| 16 | ordtypelem.2 |
. . . . . . 7
| |
| 17 | rneq 5351 |
. . . . . . . . . 10
| |
| 18 | df-ima 5127 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . . . . . 9
|
| 20 | 19 | raleqdv 3144 |
. . . . . . . 8
|
| 21 | 20 | rabbidv 3189 |
. . . . . . 7
|
| 22 | 16, 21 | syl5eq 2668 |
. . . . . 6
|
| 23 | 22 | raleqdv 3144 |
. . . . . 6
|
| 24 | 22, 23 | riotaeqbidv 6614 |
. . . . 5
|
| 25 | ordtypelem.3 |
. . . . 5
| |
| 26 | riotaex 6615 |
. . . . 5
| |
| 27 | 24, 25, 26 | fvmpt 6282 |
. . . 4
|
| 28 | 15, 27 | syl 17 |
. . 3
|
| 29 | 6, 28 | eqtrd 2656 |
. 2
|
| 30 | ordtypelem.7 |
. . . . 5
| |
| 31 | 30 | adantr 481 |
. . . 4
|
| 32 | ordtypelem.8 |
. . . . 5
| |
| 33 | 32 | adantr 481 |
. . . 4
|
| 34 | ssrab2 3687 |
. . . . 5
| |
| 35 | 34 | a1i 11 |
. . . 4
|
| 36 | inss1 3833 |
. . . . . . . 8
| |
| 37 | 36, 2 | sseldi 3601 |
. . . . . . 7
|
| 38 | imaeq2 5462 |
. . . . . . . . . . 11
| |
| 39 | 38 | raleqdv 3144 |
. . . . . . . . . 10
|
| 40 | 39 | rexbidv 3052 |
. . . . . . . . 9
|
| 41 | ordtypelem.5 |
. . . . . . . . 9
| |
| 42 | 40, 41 | elrab2 3366 |
. . . . . . . 8
|
| 43 | 42 | simprbi 480 |
. . . . . . 7
|
| 44 | 37, 43 | syl 17 |
. . . . . 6
|
| 45 | breq1 4656 |
. . . . . . . . 9
| |
| 46 | 45 | cbvralv 3171 |
. . . . . . . 8
|
| 47 | breq2 4657 |
. . . . . . . . 9
| |
| 48 | 47 | ralbidv 2986 |
. . . . . . . 8
|
| 49 | 46, 48 | syl5bb 272 |
. . . . . . 7
|
| 50 | 49 | cbvrexv 3172 |
. . . . . 6
|
| 51 | 44, 50 | sylibr 224 |
. . . . 5
|
| 52 | rabn0 3958 |
. . . . 5
| |
| 53 | 51, 52 | sylibr 224 |
. . . 4
|
| 54 | wereu2 5111 |
. . . 4
| |
| 55 | 31, 33, 35, 53, 54 | syl22anc 1327 |
. . 3
|
| 56 | riotacl2 6624 |
. . 3
| |
| 57 | 55, 56 | syl 17 |
. 2
|
| 58 | 29, 57 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: ordtypelem4 8426 ordtypelem6 8428 ordtypelem7 8429 |
| Copyright terms: Public domain | W3C validator |