MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem3 Structured version   Visualization version   Unicode version

Theorem ordtypelem3 8425
Description: Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, M    R, h, j, t, u, v, w, x, z    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem3
StepHypRef Expression
1 inss2 3834 . . . . 5  |-  ( T  i^i  dom  F )  C_ 
dom  F
2 simpr 477 . . . . 5  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  M  e.  ( T  i^i  dom  F ) )
31, 2sseldi 3601 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  M  e.  dom  F )
4 ordtypelem.1 . . . . 5  |-  F  = recs ( G )
54tfr2a 7491 . . . 4  |-  ( M  e.  dom  F  -> 
( F `  M
)  =  ( G `
 ( F  |`  M ) ) )
63, 5syl 17 . . 3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  =  ( G `  ( F  |`  M ) ) )
74tfr1a 7490 . . . . . . . . 9  |-  ( Fun 
F  /\  Lim  dom  F
)
87simpri 478 . . . . . . . 8  |-  Lim  dom  F
9 limord 5784 . . . . . . . 8  |-  ( Lim 
dom  F  ->  Ord  dom  F )
108, 9ax-mp 5 . . . . . . 7  |-  Ord  dom  F
11 ordelord 5745 . . . . . . 7  |-  ( ( Ord  dom  F  /\  M  e.  dom  F )  ->  Ord  M )
1210, 3, 11sylancr 695 . . . . . 6  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  Ord  M )
134tfr2b 7492 . . . . . 6  |-  ( Ord 
M  ->  ( M  e.  dom  F  <->  ( F  |`  M )  e.  _V ) )
1412, 13syl 17 . . . . 5  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( M  e.  dom  F  <->  ( F  |`  M )  e.  _V ) )
153, 14mpbid 222 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F  |`  M )  e. 
_V )
16 ordtypelem.2 . . . . . . 7  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
17 rneq 5351 . . . . . . . . . 10  |-  ( h  =  ( F  |`  M )  ->  ran  h  =  ran  ( F  |`  M ) )
18 df-ima 5127 . . . . . . . . . 10  |-  ( F
" M )  =  ran  ( F  |`  M )
1917, 18syl6eqr 2674 . . . . . . . . 9  |-  ( h  =  ( F  |`  M )  ->  ran  h  =  ( F " M ) )
2019raleqdv 3144 . . . . . . . 8  |-  ( h  =  ( F  |`  M )  ->  ( A. j  e.  ran  h  j R w  <->  A. j  e.  ( F " M ) j R w ) )
2120rabbidv 3189 . . . . . . 7  |-  ( h  =  ( F  |`  M )  ->  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ( F " M ) j R w }
)
2216, 21syl5eq 2668 . . . . . 6  |-  ( h  =  ( F  |`  M )  ->  C  =  { w  e.  A  |  A. j  e.  ( F " M ) j R w }
)
2322raleqdv 3144 . . . . . 6  |-  ( h  =  ( F  |`  M )  ->  ( A. u  e.  C  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
2422, 23riotaeqbidv 6614 . . . . 5  |-  ( h  =  ( F  |`  M )  ->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
25 ordtypelem.3 . . . . 5  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
26 riotaex 6615 . . . . 5  |-  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )  e.  _V
2724, 25, 26fvmpt 6282 . . . 4  |-  ( ( F  |`  M )  e.  _V  ->  ( G `  ( F  |`  M ) )  =  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
2815, 27syl 17 . . 3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( G `  ( F  |`  M ) )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
296, 28eqtrd 2656 . 2  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  =  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
30 ordtypelem.7 . . . . 5  |-  ( ph  ->  R  We  A )
3130adantr 481 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  R  We  A )
32 ordtypelem.8 . . . . 5  |-  ( ph  ->  R Se  A )
3332adantr 481 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  R Se  A )
34 ssrab2 3687 . . . . 5  |-  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  C_  A
3534a1i 11 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  C_  A
)
36 inss1 3833 . . . . . . . 8  |-  ( T  i^i  dom  F )  C_  T
3736, 2sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  M  e.  T )
38 imaeq2 5462 . . . . . . . . . . 11  |-  ( x  =  M  ->  ( F " x )  =  ( F " M
) )
3938raleqdv 3144 . . . . . . . . . 10  |-  ( x  =  M  ->  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  ( F " M
) z R t ) )
4039rexbidv 3052 . . . . . . . . 9  |-  ( x  =  M  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  ( F " M
) z R t ) )
41 ordtypelem.5 . . . . . . . . 9  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
4240, 41elrab2 3366 . . . . . . . 8  |-  ( M  e.  T  <->  ( M  e.  On  /\  E. t  e.  A  A. z  e.  ( F " M
) z R t ) )
4342simprbi 480 . . . . . . 7  |-  ( M  e.  T  ->  E. t  e.  A  A. z  e.  ( F " M
) z R t )
4437, 43syl 17 . . . . . 6  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  E. t  e.  A  A. z  e.  ( F " M
) z R t )
45 breq1 4656 . . . . . . . . 9  |-  ( j  =  z  ->  (
j R w  <->  z R w ) )
4645cbvralv 3171 . . . . . . . 8  |-  ( A. j  e.  ( F " M ) j R w  <->  A. z  e.  ( F " M ) z R w )
47 breq2 4657 . . . . . . . . 9  |-  ( w  =  t  ->  (
z R w  <->  z R
t ) )
4847ralbidv 2986 . . . . . . . 8  |-  ( w  =  t  ->  ( A. z  e.  ( F " M ) z R w  <->  A. z  e.  ( F " M
) z R t ) )
4946, 48syl5bb 272 . . . . . . 7  |-  ( w  =  t  ->  ( A. j  e.  ( F " M ) j R w  <->  A. z  e.  ( F " M
) z R t ) )
5049cbvrexv 3172 . . . . . 6  |-  ( E. w  e.  A  A. j  e.  ( F " M ) j R w  <->  E. t  e.  A  A. z  e.  ( F " M ) z R t )
5144, 50sylibr 224 . . . . 5  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  E. w  e.  A  A. j  e.  ( F " M
) j R w )
52 rabn0 3958 . . . . 5  |-  ( { w  e.  A  |  A. j  e.  ( F " M ) j R w }  =/=  (/)  <->  E. w  e.  A  A. j  e.  ( F " M ) j R w )
5351, 52sylibr 224 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  =/=  (/) )
54 wereu2 5111 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( { w  e.  A  |  A. j  e.  ( F " M
) j R w }  C_  A  /\  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  =/=  (/) ) )  ->  E! v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )
5531, 33, 35, 53, 54syl22anc 1327 . . 3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  E! v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )
56 riotacl2 6624 . . 3  |-  ( E! v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v  -> 
( iota_ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )  e. 
{ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
5755, 56syl 17 . 2  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )  e.  { v  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
5829, 57eqeltrd 2701 1  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   Se wse 5071    We wwe 5072   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Ord word 5722   Oncon0 5723   Lim wlim 5724   Fun wfun 5882   ` cfv 5888   iota_crio 6610  recscrecs 7467  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  ordtypelem4  8426  ordtypelem6  8428  ordtypelem7  8429
  Copyright terms: Public domain W3C validator