| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > paste | Structured version Visualization version Unicode version | ||
| Description: Pasting lemma. If |
| Ref | Expression |
|---|---|
| paste.1 |
|
| paste.2 |
|
| paste.4 |
|
| paste.5 |
|
| paste.6 |
|
| paste.7 |
|
| paste.8 |
|
| paste.9 |
|
| Ref | Expression |
|---|---|
| paste |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paste.7 |
. 2
| |
| 2 | paste.6 |
. . . . . . 7
| |
| 3 | 2 | ineq2d 3814 |
. . . . . 6
|
| 4 | ffun 6048 |
. . . . . . . . 9
| |
| 5 | 1, 4 | syl 17 |
. . . . . . . 8
|
| 6 | respreima 6344 |
. . . . . . . . 9
| |
| 7 | respreima 6344 |
. . . . . . . . 9
| |
| 8 | 6, 7 | uneq12d 3768 |
. . . . . . . 8
|
| 9 | 5, 8 | syl 17 |
. . . . . . 7
|
| 10 | indi 3873 |
. . . . . . 7
| |
| 11 | 9, 10 | syl6reqr 2675 |
. . . . . 6
|
| 12 | imassrn 5477 |
. . . . . . . . 9
| |
| 13 | dfdm4 5316 |
. . . . . . . . . 10
| |
| 14 | fdm 6051 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl5eqr 2670 |
. . . . . . . . 9
|
| 16 | 12, 15 | syl5sseq 3653 |
. . . . . . . 8
|
| 17 | 1, 16 | syl 17 |
. . . . . . 7
|
| 18 | df-ss 3588 |
. . . . . . 7
| |
| 19 | 17, 18 | sylib 208 |
. . . . . 6
|
| 20 | 3, 11, 19 | 3eqtr3rd 2665 |
. . . . 5
|
| 21 | 20 | adantr 481 |
. . . 4
|
| 22 | paste.4 |
. . . . . . 7
| |
| 23 | 22 | adantr 481 |
. . . . . 6
|
| 24 | paste.8 |
. . . . . . 7
| |
| 25 | cnclima 21072 |
. . . . . . 7
| |
| 26 | 24, 25 | sylan 488 |
. . . . . 6
|
| 27 | restcldr 20978 |
. . . . . 6
| |
| 28 | 23, 26, 27 | syl2anc 693 |
. . . . 5
|
| 29 | paste.5 |
. . . . . . 7
| |
| 30 | 29 | adantr 481 |
. . . . . 6
|
| 31 | paste.9 |
. . . . . . 7
| |
| 32 | cnclima 21072 |
. . . . . . 7
| |
| 33 | 31, 32 | sylan 488 |
. . . . . 6
|
| 34 | restcldr 20978 |
. . . . . 6
| |
| 35 | 30, 33, 34 | syl2anc 693 |
. . . . 5
|
| 36 | uncld 20845 |
. . . . 5
| |
| 37 | 28, 35, 36 | syl2anc 693 |
. . . 4
|
| 38 | 21, 37 | eqeltrd 2701 |
. . 3
|
| 39 | 38 | ralrimiva 2966 |
. 2
|
| 40 | cldrcl 20830 |
. . . 4
| |
| 41 | 22, 40 | syl 17 |
. . 3
|
| 42 | cntop2 21045 |
. . . 4
| |
| 43 | 24, 42 | syl 17 |
. . 3
|
| 44 | paste.1 |
. . . . 5
| |
| 45 | 44 | toptopon 20722 |
. . . 4
|
| 46 | paste.2 |
. . . . 5
| |
| 47 | 46 | toptopon 20722 |
. . . 4
|
| 48 | iscncl 21073 |
. . . 4
| |
| 49 | 45, 47, 48 | syl2anb 496 |
. . 3
|
| 50 | 41, 43, 49 | syl2anc 693 |
. 2
|
| 51 | 1, 39, 50 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-cn 21031 |
| This theorem is referenced by: cnmpt2pc 22727 cvmliftlem10 31276 |
| Copyright terms: Public domain | W3C validator |