| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carden2b | Structured version Visualization version Unicode version | ||
| Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a 8792 are meant to replace carden 9373 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| carden2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardne 8791 |
. . . . 5
| |
| 2 | ennum 8773 |
. . . . . . . 8
| |
| 3 | 2 | biimpa 501 |
. . . . . . 7
|
| 4 | cardid2 8779 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 17 |
. . . . . 6
|
| 6 | ensym 8005 |
. . . . . . 7
| |
| 7 | 6 | adantr 481 |
. . . . . 6
|
| 8 | entr 8008 |
. . . . . 6
| |
| 9 | 5, 7, 8 | syl2anc 693 |
. . . . 5
|
| 10 | 1, 9 | nsyl3 133 |
. . . 4
|
| 11 | cardon 8770 |
. . . . 5
| |
| 12 | cardon 8770 |
. . . . 5
| |
| 13 | ontri1 5757 |
. . . . 5
| |
| 14 | 11, 12, 13 | mp2an 708 |
. . . 4
|
| 15 | 10, 14 | sylibr 224 |
. . 3
|
| 16 | cardne 8791 |
. . . . 5
| |
| 17 | cardid2 8779 |
. . . . . 6
| |
| 18 | id 22 |
. . . . . 6
| |
| 19 | entr 8008 |
. . . . . 6
| |
| 20 | 17, 18, 19 | syl2anr 495 |
. . . . 5
|
| 21 | 16, 20 | nsyl3 133 |
. . . 4
|
| 22 | ontri1 5757 |
. . . . 5
| |
| 23 | 12, 11, 22 | mp2an 708 |
. . . 4
|
| 24 | 21, 23 | sylibr 224 |
. . 3
|
| 25 | 15, 24 | eqssd 3620 |
. 2
|
| 26 | ndmfv 6218 |
. . . 4
| |
| 27 | 26 | adantl 482 |
. . 3
|
| 28 | 2 | notbid 308 |
. . . . 5
|
| 29 | 28 | biimpa 501 |
. . . 4
|
| 30 | ndmfv 6218 |
. . . 4
| |
| 31 | 29, 30 | syl 17 |
. . 3
|
| 32 | 27, 31 | eqtr4d 2659 |
. 2
|
| 33 | 25, 32 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-er 7742 df-en 7956 df-card 8765 |
| This theorem is referenced by: card1 8794 carddom2 8803 cardennn 8809 cardsucinf 8810 pm54.43lem 8825 nnacda 9023 ficardun 9024 ackbij1lem5 9046 ackbij1lem8 9049 ackbij1lem9 9050 ackbij2lem2 9062 carden 9373 r1tskina 9604 cardfz 12769 |
| Copyright terms: Public domain | W3C validator |