MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncom Structured version   Visualization version   Unicode version

Theorem pmtr3ncom 17895
Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pmtr3ncom.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtr3ncom  |-  ( ( D  e.  V  /\  3  <_  ( # `  D
) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f )  =/=  ( f  o.  g
) )
Distinct variable groups:    D, f,
g    T, f, g
Allowed substitution hints:    V( f, g)

Proof of Theorem pmtr3ncom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashge3el3dif 13268 . 2  |-  ( ( D  e.  V  /\  3  <_  ( # `  D
) )  ->  E. x  e.  D  E. y  e.  D  E. z  e.  D  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
2 simprl 794 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  D  e.  V
)
3 prssi 4353 . . . . . . . . 9  |-  ( ( x  e.  D  /\  y  e.  D )  ->  { x ,  y }  C_  D )
43adantr 481 . . . . . . . 8  |-  ( ( ( x  e.  D  /\  y  e.  D
)  /\  z  e.  D )  ->  { x ,  y }  C_  D )
54ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  { x ,  y }  C_  D
)
6 simplll 798 . . . . . . . . 9  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  e.  D )
7 simplr 792 . . . . . . . . . 10  |-  ( ( ( x  e.  D  /\  y  e.  D
)  /\  z  e.  D )  ->  y  e.  D )
87adantr 481 . . . . . . . . 9  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
y  e.  D )
9 simpr1 1067 . . . . . . . . 9  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  x  =/=  y )
10 pr2nelem 8827 . . . . . . . . 9  |-  ( ( x  e.  D  /\  y  e.  D  /\  x  =/=  y )  ->  { x ,  y }  ~~  2o )
116, 8, 9, 10syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  { x ,  y }  ~~  2o )
1211adantr 481 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  { x ,  y }  ~~  2o )
13 pmtr3ncom.t . . . . . . . 8  |-  T  =  (pmTrsp `  D )
14 eqid 2622 . . . . . . . 8  |-  ran  T  =  ran  T
1513, 14pmtrrn 17877 . . . . . . 7  |-  ( ( D  e.  V  /\  { x ,  y } 
C_  D  /\  {
x ,  y } 
~~  2o )  -> 
( T `  {
x ,  y } )  e.  ran  T
)
162, 5, 12, 15syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  ( T `  { x ,  y } )  e.  ran  T )
17 prssi 4353 . . . . . . . . 9  |-  ( ( y  e.  D  /\  z  e.  D )  ->  { y ,  z }  C_  D )
1817adantll 750 . . . . . . . 8  |-  ( ( ( x  e.  D  /\  y  e.  D
)  /\  z  e.  D )  ->  { y ,  z }  C_  D )
1918ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  { y ,  z }  C_  D
)
20 simplr 792 . . . . . . . . 9  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
z  e.  D )
21 simpr3 1069 . . . . . . . . 9  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
y  =/=  z )
22 pr2nelem 8827 . . . . . . . . 9  |-  ( ( y  e.  D  /\  z  e.  D  /\  y  =/=  z )  ->  { y ,  z }  ~~  2o )
238, 20, 21, 22syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  ->  { y ,  z }  ~~  2o )
2423adantr 481 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  { y ,  z }  ~~  2o )
2513, 14pmtrrn 17877 . . . . . . 7  |-  ( ( D  e.  V  /\  { y ,  z } 
C_  D  /\  {
y ,  z } 
~~  2o )  -> 
( T `  {
y ,  z } )  e.  ran  T
)
262, 19, 24, 25syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  ( T `  { y ,  z } )  e.  ran  T )
27 df-3an 1039 . . . . . . . . 9  |-  ( ( x  e.  D  /\  y  e.  D  /\  z  e.  D )  <->  ( ( x  e.  D  /\  y  e.  D
)  /\  z  e.  D ) )
2827biimpri 218 . . . . . . . 8  |-  ( ( ( x  e.  D  /\  y  e.  D
)  /\  z  e.  D )  ->  (
x  e.  D  /\  y  e.  D  /\  z  e.  D )
)
2928ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  ( x  e.  D  /\  y  e.  D  /\  z  e.  D ) )
30 simplr 792 . . . . . . 7  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )
31 eqid 2622 . . . . . . . 8  |-  ( T `
 { x ,  y } )  =  ( T `  {
x ,  y } )
32 eqid 2622 . . . . . . . 8  |-  ( T `
 { y ,  z } )  =  ( T `  {
y ,  z } )
3313, 31, 32pmtr3ncomlem2 17894 . . . . . . 7  |-  ( ( D  e.  V  /\  ( x  e.  D  /\  y  e.  D  /\  z  e.  D
)  /\  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  -> 
( ( T `  { y ,  z } )  o.  ( T `  { x ,  y } ) )  =/=  ( ( T `  { x ,  y } )  o.  ( T `  { y ,  z } ) ) )
342, 29, 30, 33syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  ( ( T `
 { y ,  z } )  o.  ( T `  {
x ,  y } ) )  =/=  (
( T `  {
x ,  y } )  o.  ( T `
 { y ,  z } ) ) )
35 coeq2 5280 . . . . . . . 8  |-  ( f  =  ( T `  { x ,  y } )  ->  (
g  o.  f )  =  ( g  o.  ( T `  {
x ,  y } ) ) )
36 coeq1 5279 . . . . . . . 8  |-  ( f  =  ( T `  { x ,  y } )  ->  (
f  o.  g )  =  ( ( T `
 { x ,  y } )  o.  g ) )
3735, 36neeq12d 2855 . . . . . . 7  |-  ( f  =  ( T `  { x ,  y } )  ->  (
( g  o.  f
)  =/=  ( f  o.  g )  <->  ( g  o.  ( T `  {
x ,  y } ) )  =/=  (
( T `  {
x ,  y } )  o.  g ) ) )
38 coeq1 5279 . . . . . . . 8  |-  ( g  =  ( T `  { y ,  z } )  ->  (
g  o.  ( T `
 { x ,  y } ) )  =  ( ( T `
 { y ,  z } )  o.  ( T `  {
x ,  y } ) ) )
39 coeq2 5280 . . . . . . . 8  |-  ( g  =  ( T `  { y ,  z } )  ->  (
( T `  {
x ,  y } )  o.  g )  =  ( ( T `
 { x ,  y } )  o.  ( T `  {
y ,  z } ) ) )
4038, 39neeq12d 2855 . . . . . . 7  |-  ( g  =  ( T `  { y ,  z } )  ->  (
( g  o.  ( T `  { x ,  y } ) )  =/=  ( ( T `  { x ,  y } )  o.  g )  <->  ( ( T `  { y ,  z } )  o.  ( T `  { x ,  y } ) )  =/=  ( ( T `  { x ,  y } )  o.  ( T `  { y ,  z } ) ) ) )
4137, 40rspc2ev 3324 . . . . . 6  |-  ( ( ( T `  {
x ,  y } )  e.  ran  T  /\  ( T `  {
y ,  z } )  e.  ran  T  /\  ( ( T `  { y ,  z } )  o.  ( T `  { x ,  y } ) )  =/=  ( ( T `  { x ,  y } )  o.  ( T `  { y ,  z } ) ) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f
)  =/=  ( f  o.  g ) )
4216, 26, 34, 41syl3anc 1326 . . . . 5  |-  ( ( ( ( ( x  e.  D  /\  y  e.  D )  /\  z  e.  D )  /\  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z ) )  /\  ( D  e.  V  /\  3  <_  ( # `  D ) ) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f
)  =/=  ( f  o.  g ) )
4342exp31 630 . . . 4  |-  ( ( ( x  e.  D  /\  y  e.  D
)  /\  z  e.  D )  ->  (
( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z
)  ->  ( ( D  e.  V  /\  3  <_  ( # `  D
) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f )  =/=  ( f  o.  g
) ) ) )
4443rexlimdva 3031 . . 3  |-  ( ( x  e.  D  /\  y  e.  D )  ->  ( E. z  e.  D  ( x  =/=  y  /\  x  =/=  z  /\  y  =/=  z )  ->  (
( D  e.  V  /\  3  <_  ( # `  D ) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f
)  =/=  ( f  o.  g ) ) ) )
4544rexlimivv 3036 . 2  |-  ( E. x  e.  D  E. y  e.  D  E. z  e.  D  (
x  =/=  y  /\  x  =/=  z  /\  y  =/=  z )  ->  (
( D  e.  V  /\  3  <_  ( # `  D ) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f
)  =/=  ( f  o.  g ) ) )
461, 45mpcom 38 1  |-  ( ( D  e.  V  /\  3  <_  ( # `  D
) )  ->  E. f  e.  ran  T E. g  e.  ran  T ( g  o.  f )  =/=  ( f  o.  g
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   {cpr 4179   class class class wbr 4653   ran crn 5115    o. ccom 5118   ` cfv 5888   2oc2o 7554    ~~ cen 7952    <_ cle 10075   3c3 11071   #chash 13117  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-pmtr 17862
This theorem is referenced by:  pgrpgt2nabl  42147
  Copyright terms: Public domain W3C validator