MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn2 Structured version   Visualization version   Unicode version

Theorem pmtrrn2 17880
Description: For any transposition there are two points it is transposing. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrrn2  |-  ( F  e.  R  ->  E. x  e.  D  E. y  e.  D  ( x  =/=  y  /\  F  =  ( T `  {
x ,  y } ) ) )
Distinct variable groups:    x, y, D    x, T, y    x, F, y    x, R, y

Proof of Theorem pmtrrn2
StepHypRef Expression
1 pmtrrn.t . . . . . . 7  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . . . 7  |-  R  =  ran  T
3 eqid 2622 . . . . . . 7  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
41, 2, 3pmtrfrn 17878 . . . . . 6  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
54simpld 475 . . . . 5  |-  ( F  e.  R  ->  ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o ) )
65simp3d 1075 . . . 4  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  2o )
7 en2 8196 . . . 4  |-  ( dom  ( F  \  _I  )  ~~  2o  ->  E. x E. y dom  ( F 
\  _I  )  =  { x ,  y } )
86, 7syl 17 . . 3  |-  ( F  e.  R  ->  E. x E. y dom  ( F 
\  _I  )  =  { x ,  y } )
95simp2d 1074 . . . . . . 7  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  C_  D )
104simprd 479 . . . . . . 7  |-  ( F  e.  R  ->  F  =  ( T `  dom  ( F  \  _I  ) ) )
119, 6, 10jca32 558 . . . . . 6  |-  ( F  e.  R  ->  ( dom  ( F  \  _I  )  C_  D  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) ) )
12 sseq1 3626 . . . . . . 7  |-  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( dom  ( F  \  _I  )  C_  D  <->  { x ,  y }  C_  D ) )
13 breq1 4656 . . . . . . . 8  |-  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( dom  ( F  \  _I  )  ~~  2o  <->  { x ,  y }  ~~  2o ) )
14 fveq2 6191 . . . . . . . . 9  |-  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( T `  dom  ( F  \  _I  ) )  =  ( T `  { x ,  y } ) )
1514eqeq2d 2632 . . . . . . . 8  |-  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( F  =  ( T `
 dom  ( F  \  _I  ) )  <->  F  =  ( T `  { x ,  y } ) ) )
1613, 15anbi12d 747 . . . . . . 7  |-  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( ( dom  ( F 
\  _I  )  ~~  2o  /\  F  =  ( T `  dom  ( F  \  _I  ) ) )  <->  ( { x ,  y }  ~~  2o  /\  F  =  ( T `  { x ,  y } ) ) ) )
1712, 16anbi12d 747 . . . . . 6  |-  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( ( dom  ( F 
\  _I  )  C_  D  /\  ( dom  ( F  \  _I  )  ~~  2o  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )  <->  ( {
x ,  y } 
C_  D  /\  ( { x ,  y }  ~~  2o  /\  F  =  ( T `  { x ,  y } ) ) ) ) )
1811, 17syl5ibcom 235 . . . . 5  |-  ( F  e.  R  ->  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( { x ,  y }  C_  D  /\  ( { x ,  y }  ~~  2o  /\  F  =  ( T `  { x ,  y } ) ) ) ) )
19 vex 3203 . . . . . . . 8  |-  x  e. 
_V
20 vex 3203 . . . . . . . 8  |-  y  e. 
_V
2119, 20prss 4351 . . . . . . 7  |-  ( ( x  e.  D  /\  y  e.  D )  <->  { x ,  y } 
C_  D )
2221bicomi 214 . . . . . 6  |-  ( { x ,  y } 
C_  D  <->  ( x  e.  D  /\  y  e.  D ) )
23 pr2ne 8828 . . . . . . . 8  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( { x ,  y }  ~~  2o  <->  x  =/=  y ) )
2419, 20, 23mp2an 708 . . . . . . 7  |-  ( { x ,  y } 
~~  2o  <->  x  =/=  y
)
2524anbi1i 731 . . . . . 6  |-  ( ( { x ,  y }  ~~  2o  /\  F  =  ( T `  { x ,  y } ) )  <->  ( x  =/=  y  /\  F  =  ( T `  {
x ,  y } ) ) )
2622, 25anbi12i 733 . . . . 5  |-  ( ( { x ,  y }  C_  D  /\  ( { x ,  y }  ~~  2o  /\  F  =  ( T `  { x ,  y } ) ) )  <-> 
( ( x  e.  D  /\  y  e.  D )  /\  (
x  =/=  y  /\  F  =  ( T `  { x ,  y } ) ) ) )
2718, 26syl6ib 241 . . . 4  |-  ( F  e.  R  ->  ( dom  ( F  \  _I  )  =  { x ,  y }  ->  ( ( x  e.  D  /\  y  e.  D
)  /\  ( x  =/=  y  /\  F  =  ( T `  {
x ,  y } ) ) ) ) )
28272eximdv 1848 . . 3  |-  ( F  e.  R  ->  ( E. x E. y dom  ( F  \  _I  )  =  { x ,  y }  ->  E. x E. y ( ( x  e.  D  /\  y  e.  D
)  /\  ( x  =/=  y  /\  F  =  ( T `  {
x ,  y } ) ) ) ) )
298, 28mpd 15 . 2  |-  ( F  e.  R  ->  E. x E. y ( ( x  e.  D  /\  y  e.  D )  /\  (
x  =/=  y  /\  F  =  ( T `  { x ,  y } ) ) ) )
30 r2ex 3061 . 2  |-  ( E. x  e.  D  E. y  e.  D  (
x  =/=  y  /\  F  =  ( T `  { x ,  y } ) )  <->  E. x E. y ( ( x  e.  D  /\  y  e.  D )  /\  (
x  =/=  y  /\  F  =  ( T `  { x ,  y } ) ) ) )
3129, 30sylibr 224 1  |-  ( F  e.  R  ->  E. x  e.  D  E. y  e.  D  ( x  =/=  y  /\  F  =  ( T `  {
x ,  y } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {cpr 4179   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  mdetunilem7  20424
  Copyright terms: Public domain W3C validator