HomeHome Metamath Proof Explorer
Theorem List (p. 253 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 25201-25300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrpvmasum2 25201* A partial result along the lines of rpvmasum 25215. The sum of the von Mangoldt function over those integers  n  ==  A (mod  N) is asymptotic to  ( 1  -  M
) ( log x  /  phi ( x ) )  +  O(1), where  M is the number of non-principal Dirichlet characters with  sum_ n  e.  NN ,  X ( n )  /  n  =  0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  U  =  (Unit `  Z )   &    |-  ( ph  ->  A  e.  U )   &    |-  T  =  ( `' L " { A } )   &    |-  (
 ( ph  /\  f  e.  W )  ->  A  =  ( 1r `  Z ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  (
 ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W ) ) ) ) )  e.  O(1) )
 
Theoremdchrisum0re 25202* Suppose  X is a non-principal Dirichlet character with  sum_ n  e.  NN ,  X ( n )  /  n  =  0. Then  X is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   =>    |-  ( ph  ->  X : ( Base `  Z )
 --> RR )
 
Theoremdchrisum0lema 25203* Lemma for dchrisum0 25209. Apply dchrisum 25181 for the function  1  /  sqr y. (Contributed by Mario Carneiro, 10-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )   =>    |-  ( ph  ->  E. t E. c  e.  (
 0 [,) +oo ) ( 
 seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1
 (  +  ,  F ) `  ( |_ `  y
 ) )  -  t
 ) )  <_  (
 c  /  ( sqr `  y ) ) ) )
 
Theoremdchrisum0lem1b 25204* Lemma for dchrisum0lem1 25205. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  ( sqr `  y ) ) )   =>    |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  (
 1 ... ( |_ `  x ) ) )  ->  ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  ( ( x ^
 2 )  /  d
 ) ) ) ( ( X `  ( L `  m ) ) 
 /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  /  ( sqr `  x ) ) )
 
Theoremdchrisum0lem1 25205* Lemma for dchrisum0 25209. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  ( sqr `  y ) ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  ( x ^ 2
 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  (
 ( x ^ 2
 )  /  m )
 ) ) ( ( ( X `  ( L `  m ) ) 
 /  ( sqr `  m ) )  /  ( sqr `  d ) ) )  e.  O(1) )
 
Theoremdchrisum0lem2a 25206* Lemma for dchrisum0 25209. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  ( sqr `  y ) ) )   &    |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y
 ) ) ( 1 
 /  ( sqr `  d
 ) )  -  (
 2  x.  ( sqr `  y ) ) ) )   &    |-  ( ph  ->  H  ~~> r  U )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
  ( L `  m ) )  /  ( sqr `  m )
 )  x.  ( H `
  ( ( x ^ 2 )  /  m ) ) ) )  e.  O(1) )
 
Theoremdchrisum0lem2 25207* Lemma for dchrisum0 25209. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  ( sqr `  y ) ) )   &    |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y
 ) ) ( 1 
 /  ( sqr `  d
 ) )  -  (
 2  x.  ( sqr `  y ) ) ) )   &    |-  ( ph  ->  H  ~~> r  U )   &    |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) ) 
 /  a ) )   &    |-  ( ph  ->  E  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  K )  ~~>  T )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) ) 
 <_  ( E  /  y
 ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
 sum_ d  e.  (
 1 ... ( |_ `  (
 ( x ^ 2
 )  /  m )
 ) ) ( ( ( X `  ( L `  m ) ) 
 /  ( sqr `  m ) )  /  ( sqr `  d ) ) )  e.  O(1) )
 
Theoremdchrisum0lem3 25208* Lemma for dchrisum0 25209. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) ) 
 <_  ( C  /  ( sqr `  y ) ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
 2 ) ) )
 sum_ d  e.  (
 1 ... ( |_ `  (
 ( x ^ 2
 )  /  m )
 ) ) ( ( X `  ( L `
  m ) ) 
 /  ( sqr `  ( m  x.  d ) ) ) )  e.  O(1) )
 
Theoremdchrisum0 25209* The sum  sum_ n  e.  NN ,  X ( n )  /  n is nonzero for all non-principal Dirichlet characters (i.e. the assumption  X  e.  W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 25183 and dchrvmasumif 25192. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `  ( L `
  m ) ) 
 /  m )  =  0 }   &    |-  ( ph  ->  X  e.  W )   =>    |-  -.  ph
 
Theoremdchrisumn0 25210* The sum  sum_ n  e.  NN ,  X ( n )  /  n is nonzero for all non-principal Dirichlet characters (i.e. the assumption  X  e.  W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 25183 and dchrvmasumif 25192. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) ) 
 <_  ( C  /  y
 ) )   =>    |-  ( ph  ->  T  =/=  0 )
 
Theoremdchrmusumlem 25211* The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) ) 
 <_  ( C  /  y
 ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
 
Theoremdchrvmasumlem 25212* The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   &    |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )   &    |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )   &    |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )   &    |-  ( ph  ->  A. y  e.  (
 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) ) 
 <_  ( C  /  y
 ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n ) ) )  e.  O(1) )
 
Theoremdchrmusum 25213* The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
 
Theoremdchrvmasum 25214* The sum of the von Mangoldt function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.8 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  G  =  (DChr `  N )   &    |-  D  =  ( Base `  G )   &    |-  .1.  =  ( 0g `  G )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  X  =/=  .1.  )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n ) ) )  e.  O(1) )
 
Theoremrpvmasum 25215* The sum of the von Mangoldt function over those integers  n  ==  A (mod  N) is asymptotic to  log x  /  phi ( x )  +  O(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  U  =  (Unit `  Z )   &    |-  ( ph  ->  A  e.  U )   &    |-  T  =  ( `' L " { A } )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  (
 ( 1 ... ( |_ `  x ) )  i^i  T ) ( (Λ `  n )  /  n ) )  -  ( log `  x )
 ) )  e.  O(1) )
 
Theoremrplogsum 25216* The sum of  log p  /  p over the primes 
p  ==  A (mod  N) is asymptotic to  log x  /  phi ( x )  +  O(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  U  =  (Unit `  Z )   &    |-  ( ph  ->  A  e.  U )   &    |-  T  =  ( `' L " { A } )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ p  e.  (
 ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  p )  /  p ) )  -  ( log `  x )
 ) )  e.  O(1) )
 
Theoremdirith2 25217 Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to  N. Theorem 9.4.1 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
 |-  Z  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Z )   &    |-  ( ph  ->  N  e.  NN )   &    |-  U  =  (Unit `  Z )   &    |-  ( ph  ->  A  e.  U )   &    |-  T  =  ( `' L " { A } )   =>    |-  ( ph  ->  ( Prime  i^i  T )  ~~  NN )
 
Theoremdirith 25218* Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to  N. Theorem 9.4.1 of [Shapiro], p. 375. See http://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an informal exposition. This is Metamath 100 proof #48. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  { p  e.  Prime  |  N  ||  ( p  -  A ) }  ~~  NN )
 
14.4.13  The Prime Number Theorem
 
Theoremmudivsum 25219* Asymptotic formula for  sum_ n  <_  x ,  mmu ( n )  /  n  =  O(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
 |-  ( x  e.  RR+  |->  sum_
 n  e.  ( 1
 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n ) )  e.  O(1)
 
Theoremmulogsumlem 25220* Lemma for mulogsum 25221. (Contributed by Mario Carneiro, 14-May-2016.)
 |-  ( x  e.  RR+  |->  sum_
 n  e.  ( 1
 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  (
 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)
 
Theoremmulogsum 25221* Asymptotic formula for  sum_ n  <_  x ,  ( mmu ( n )  /  n ) log (
x  /  n )  =  O(1). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.)
 |-  ( x  e.  RR+  |->  sum_
 n  e.  ( 1
 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  e.  O(1)
 
Theoremlogdivsum 25222* Asymptotic analysis of  sum_ n  <_  x ,  log n  /  n  =  ( log x ) ^ 2  /  2  +  L  +  O ( log x  /  x ). (Contributed by Mario Carneiro, 18-May-2016.)
 |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_ `  y
 ) ) ( ( log `  i )  /  i )  -  (
 ( ( log `  y
 ) ^ 2 ) 
 /  2 ) ) )   =>    |-  ( F : RR+ --> RR 
 /\  F  e.  dom  ~~> r 
 /\  ( ( F  ~~> r  L  /\  A  e.  RR+  /\  _e  <_  A )  ->  ( abs `  (
 ( F `  A )  -  L ) ) 
 <_  ( ( log `  A )  /  A ) ) )
 
Theoremmulog2sumlem1 25223* Asymptotic formula for  sum_ n  <_  x ,  log (
x  /  n )  /  n  =  ( 1  /  2 ) log ^ 2 ( x )  +  gamma  x.  log x  -  L  +  O ( log x  /  x ), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
 |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_ `  y
 ) ) ( ( log `  i )  /  i )  -  (
 ( ( log `  y
 ) ^ 2 ) 
 /  2 ) ) )   &    |-  ( ph  ->  F  ~~> r  L )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  _e 
 <_  A )   =>    |-  ( ph  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  A ) ) ( ( log `  ( A  /  m ) ) 
 /  m )  -  ( ( ( ( log `  A ) ^ 2 )  / 
 2 )  +  (
 ( gamma  x.  ( log `  A ) )  -  L ) ) ) )  <_  ( 2  x.  ( ( log `  A )  /  A ) ) )
 
Theoremmulog2sumlem2 25224* Lemma for mulog2sum 25226. (Contributed by Mario Carneiro, 19-May-2016.)
 |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_ `  y
 ) ) ( ( log `  i )  /  i )  -  (
 ( ( log `  y
 ) ^ 2 ) 
 /  2 ) ) )   &    |-  ( ph  ->  F  ~~> r  L )   &    |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2
 )  /  2 )  +  ( ( gamma  x.  ( log `  ( x  /  n ) ) )  -  L ) )   &    |-  R  =  ( (
 ( 1  /  2
 )  +  ( gamma  +  ( abs `  L ) ) )  +  sum_
 m  e.  ( 1
 ... 2 ) ( ( log `  ( _e  /  m ) ) 
 /  m ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n )  x.  T )  -  ( log `  x )
 ) )  e.  O(1) )
 
Theoremmulog2sumlem3 25225* Lemma for mulog2sum 25226. (Contributed by Mario Carneiro, 13-May-2016.)
 |-  F  =  ( y  e.  RR+  |->  ( sum_ i  e.  ( 1 ... ( |_ `  y
 ) ) ( ( log `  i )  /  i )  -  (
 ( ( log `  y
 ) ^ 2 ) 
 /  2 ) ) )   &    |-  ( ph  ->  F  ~~> r  L )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n )  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
 
Theoremmulog2sum 25226* Asymptotic formula for  sum_ n  <_  x ,  ( mmu ( n )  /  n ) log ^
2 ( x  /  n )  =  2 log x  +  O(1). Equation 10.2.8 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 19-May-2016.)
 |-  ( x  e.  RR+  |->  ( sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n )  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremvmalogdivsum2 25227* The sum  sum_ n  <_  x , Λ ( n ) log ( x  /  n )  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) 
 /  ( log `  x ) )  -  (
 ( log `  x )  /  2 ) ) )  e.  O(1)
 
Theoremvmalogdivsum 25228* The sum  sum_ n  <_  x , Λ ( n ) log n  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  /  n )  x.  ( log `  n ) ) 
 /  ( log `  x ) )  -  (
 ( log `  x )  /  2 ) ) )  e.  O(1)
 
Theorem2vmadivsumlem 25229* Lemma for 2vmadivsum 25230. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  ( sum_ i  e.  (
 1 ... ( |_ `  y
 ) ) ( (Λ `  i )  /  i
 )  -  ( log `  y ) ) ) 
 <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( (
 sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  /  m ) ) 
 /  ( log `  x ) )  -  (
 ( log `  x )  /  2 ) ) )  e.  O(1) )
 
Theorem2vmadivsum 25230* The sum  sum_ m n  <_  x , Λ (
m )Λ ( n )  /  m n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  /  m ) ) 
 /  ( log `  x ) )  -  (
 ( log `  x )  /  2 ) ) )  e.  O(1)
 
Theoremlogsqvma 25231* A formula for  log ^ 2 ( N ) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
 |-  ( N  e.  NN  -> 
 sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( sum_ u  e.  { x  e. 
 NN  |  x  ||  d }  ( (Λ `  u )  x.  (Λ `  ( d  /  u ) ) )  +  ( (Λ `  d )  x.  ( log `  d
 ) ) )  =  ( ( log `  N ) ^ 2 ) )
 
Theoremlogsqvma2 25232* The Möbius inverse of logsqvma 25231. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
 |-  ( N  e.  NN  -> 
 sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( ( mmu `  d )  x.  ( ( log `  ( N  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( (Λ `  d )  x.  (Λ `  ( N  /  d ) ) )  +  ( (Λ `  N )  x.  ( log `  N ) ) ) )
 
Theoremlog2sumbnd 25233* Bound on the difference between 
sum_ n  <_  A ,  log ^ 2 ( n ) and the equivalent integral. (Contributed by Mario Carneiro, 20-May-2016.)
 |-  ( ( A  e.  RR+  /\  1  <_  A ) 
 ->  ( abs `  ( sum_ n  e.  ( 1
 ... ( |_ `  A ) ) ( ( log `  n ) ^ 2 )  -  ( A  x.  (
 ( ( log `  A ) ^ 2 )  +  ( 2  -  (
 2  x.  ( log `  A ) ) ) ) ) ) ) 
 <_  ( ( ( log `  A ) ^ 2
 )  +  2 ) )
 
Theoremselberglem1 25234* Lemma for selberg 25237. Estimation of the asymptotic part of selberglem3 25236. (Contributed by Mario Carneiro, 20-May-2016.)
 |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n )   =>    |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T )  -  (
 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselberglem2 25235* Lemma for selberg 25237. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n )   =>    |-  ( x  e.  RR+  |->  ( (
 sum_ n  e.  (
 1 ... ( |_ `  x ) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
 ( log `  m ) ^ 2 ) ) 
 /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselberglem3 25236* Lemma for selberg 25237. Estimation of the left-hand side of logsqvma2 25232. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
 sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( ( mmu `  d )  x.  ( ( log `  ( n  /  d ) ) ^ 2 ) ) 
 /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselberg 25237* Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that  sum_
n  <_  x , Λ ( n ) log n  +  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n )  =  2 x log x  +  O
( x ). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) ) ) 
 /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselbergb 25238* Convert eventual boundedness in selberg 25237 to boundedness on  [ 1 , +oo ). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.)
 |- 
 E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) ) ) 
 /  x )  -  ( 2  x.  ( log `  x ) ) ) )  <_  c
 
Theoremselberg2lem 25239* Lemma for selberg2 25240. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n ) )  -  (
 (ψ `  x )  x.  ( log `  x ) ) )  /  x ) )  e.  O(1)
 
Theoremselberg2 25240* Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
 |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselberg2b 25241* Convert eventual boundedness in selberg2 25240 to boundedness on any interval  [ A , +oo ). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 25-May-2016.)
 |- 
 E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) ) 
 <_  c
 
Theoremchpdifbndlem1 25242* Lemma for chpdifbnd 25244. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z
 ) )  +  sum_ m  e.  ( 1 ... ( |_ `  z
 ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) ) 
 /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B )   &    |-  C  =  ( ( B  x.  ( A  +  1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )   &    |-  ( ph  ->  X  e.  (
 1 (,) +oo ) )   &    |-  ( ph  ->  Y  e.  ( X [,] ( A  x.  X ) ) )   =>    |-  ( ph  ->  (
 (ψ `  Y )  -  (ψ `  X )
 )  <_  ( (
 2  x.  ( Y  -  X ) )  +  ( C  x.  ( X  /  ( log `  X ) ) ) ) )
 
Theoremchpdifbndlem2 25243* Lemma for chpdifbnd 25244. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  1 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. z  e.  ( 1 [,) +oo ) ( abs `  ( ( ( ( (ψ `  z )  x.  ( log `  z
 ) )  +  sum_ m  e.  ( 1 ... ( |_ `  z
 ) ) ( (Λ `  m )  x.  (ψ `  ( z  /  m ) ) ) ) 
 /  z )  -  ( 2  x.  ( log `  z ) ) ) )  <_  B )   &    |-  C  =  ( ( B  x.  ( A  +  1 ) )  +  ( ( 2  x.  A )  x.  ( log `  A ) ) )   =>    |-  ( ph  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) A. y  e.  ( x [,] ( A  x.  x ) ) ( (ψ `  y )  -  (ψ `  x )
 )  <_  ( (
 2  x.  ( y  -  x ) )  +  ( c  x.  ( x  /  ( log `  x ) ) ) ) )
 
Theoremchpdifbnd 25244* A bound on the difference of nearby ψ values. Theorem 10.5.2 of [Shapiro], p. 427. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) A. y  e.  ( x [,] ( A  x.  x ) ) ( (ψ `  y
 )  -  (ψ `  x ) )  <_  ( ( 2  x.  ( y  -  x ) )  +  (
 c  x.  ( x 
 /  ( log `  x ) ) ) ) )
 
Theoremlogdivbnd 25245* A bound on a sum of logs, used in pntlemk 25295. This is not as precise as logdivsum 25222 in its asymptotic behavior, but it is valid for all  N and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( N  e.  NN  -> 
 sum_ n  e.  (
 1 ... N ) ( ( log `  n )  /  n )  <_  ( ( ( ( log `  N )  +  1 ) ^
 2 )  /  2
 ) )
 
Theoremselberg3lem1 25246* Introduce a log weighting on the summands of  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n ), the core of selberg2 25240 (written here as  sum_ n  <_  x , Λ ( n )ψ (
x  /  n )). Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  ( ( sum_ k  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  k
 )  x.  ( log `  k ) )  -  ( (ψ `  y )  x.  ( log `  y
 ) ) )  /  y ) )  <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( 2  /  ( log `  x )
 )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n ) ) )  -  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) 
 /  x ) )  e.  O(1) )
 
Theoremselberg3lem2 25247* Lemma for selberg3 25248. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n ) ) )  -  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) 
 /  x ) )  e.  O(1)
 
Theoremselberg3 25248* Introduce a log weighting on the summands of  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n ), the core of selberg2 25240 (written here as  sum_ n  <_  x , Λ ( n )ψ (
x  /  n )). Equation 10.6.7 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselberg4lem1 25249* Lemma for selberg4 25250. Equation 10.4.20 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  ( ( sum_ i  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( y  /  i ) ) ) )  /  y )  -  ( 2  x.  ( log `  y
 ) ) ) ) 
 <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( (
 sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  x.  ( ( log `  m )  +  (ψ `  ( ( x  /  n )  /  m ) ) ) ) )  /  ( x  x.  ( log `  x ) ) )  -  ( log `  x )
 ) )  e.  O(1) )
 
Theoremselberg4 25250* The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form  sum_ i j k  <_  x , Λ ( i )Λ ( j )Λ ( k ); we eliminate one of the nested sums by using the definition of ψ ( x )  =  sum_ k  <_  x , Λ ( k ). This statement can thus equivalently be written ψ
( x ) log
^ 2 ( x )  =  2 sum_ i
j k  <_  x , Λ ( i )Λ (
j )Λ ( k )  +  O ( x log x ). Equation 10.4.23 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  (
 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  (
 ( x  /  n )  /  m ) ) ) ) ) ) 
 /  x ) )  e.  O(1)
 
Theorempntrval 25251* Define the residual of the second Chebyshev function. The goal is to have  R ( x )  e.  o ( x ), or  R ( x )  /  x  ~~> r  0. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( A  e.  RR+  ->  ( R `  A )  =  ( (ψ `  A )  -  A ) )
 
Theorempntrf 25252 Functionality of the residual. Lemma for pnt 25303. (Contributed by Mario Carneiro, 8-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  R : RR+ --> RR
 
Theorempntrmax 25253* There is a bound on the residual valid for all  x. (Contributed by Mario Carneiro, 9-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  c
 
Theorempntrsumo1 25254* A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  RR  |->  sum_
 n  e.  ( 1
 ... ( |_ `  x ) ) ( ( R `  n ) 
 /  ( n  x.  ( n  +  1
 ) ) ) )  e.  O(1)
 
Theorempntrsumbnd 25255* A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. m  e.  ZZ  ( abs `  sum_ n  e.  (
 1 ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1
 ) ) ) ) 
 <_  c
 
Theorempntrsumbnd2 25256* A bound on a sum over  R. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. k  e.  NN  A. m  e.  ZZ  ( abs `  sum_ n  e.  (
 k ... m ) ( ( R `  n )  /  ( n  x.  ( n  +  1
 ) ) ) ) 
 <_  c
 
Theoremselbergr 25257* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  RR+  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  +  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
 )  x.  ( R `
  ( x  /  d ) ) ) )  /  x ) )  e.  O(1)
 
Theoremselberg3r 25258* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( R `
  x )  x.  ( log `  x ) )  +  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( (Λ `  n )  x.  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x ) )  e.  O(1)
 
Theoremselberg4r 25259* Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( R `
  x )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O(1)
 
Theoremselberg34r 25260* The sum of selberg3r 25258 and selberg4r 25259. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( R `
  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1
 ... ( |_ `  x ) ) ( ( R `  ( x 
 /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n )  x.  ( log `  n ) ) ) ) 
 /  ( log `  x ) ) )  /  x ) )  e.  O(1)
 
Theorempntsval 25261* Define the "Selberg function", whose asymptotic behavior is the content of selberg 25237. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( (Λ `  n )  x.  ( ( log `  n )  +  (ψ `  ( A  /  n ) ) ) ) )
 
Theorempntsf 25262* Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  S : RR --> RR
 
Theoremselbergs 25263* Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  ( x  e.  RR+  |->  ( ( ( S `
  x )  /  x )  -  (
 2  x.  ( log `  x ) ) ) )  e.  O(1)
 
Theoremselbergsb 25264* Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |- 
 E. c  e.  RR+  A. x  e.  ( 1 [,) +oo ) ( abs `  ( ( ( S `
  x )  /  x )  -  (
 2  x.  ( log `  x ) ) ) )  <_  c
 
Theorempntsval2 25265* The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   =>    |-  ( A  e.  RR  ->  ( S `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
 
Theorempntrlog2bndlem1 25266* The sum of selberg3r 25258 and selberg4r 25259. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
  n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_O(1)
 
Theorempntrlog2bndlem2 25267* Lemma for pntrlog2bnd 25273. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  (ψ `  y )  <_  ( A  x.  y ) )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
  ( x  /  ( n  +  1
 ) ) )  -  ( R `  ( x 
 /  n ) ) ) ) )  /  ( x  x.  ( log `  x ) ) ) )  e.  O(1) )
 
Theorempntrlog2bndlem3 25268* Lemma for pntrlog2bnd 25273. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  ( ( ( S `
  y )  /  y )  -  (
 2  x.  ( log `  y ) ) ) )  <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  +  1 ) ) ) ) )  x.  (
 ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) ) )  /  ( x  x.  ( log `  x ) ) ) )  e.  O(1) )
 
Theorempntrlog2bndlem4 25269* Lemma for pntrlog2bnd 25273. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   =>    |-  ( x  e.  (
 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  ( ( 2 
 /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( T `
  n )  -  ( T `  ( n  -  1 ) ) ) ) ) ) 
 /  x ) )  e.  <_O(1)
 
Theorempntrlog2bndlem5 25270* Lemma for pntrlog2bnd 25273. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
 ) )  <_  B )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) ) 
 /  x ) )  e.  <_O(1) )
 
Theorempntrlog2bndlem6a 25271* Lemma for pntrlog2bndlem6 25272. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
 ) )  <_  B )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   =>    |-  ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( 1
 ... ( |_ `  x ) )  =  (
 ( 1 ... ( |_ `  ( x  /  A ) ) )  u.  ( ( ( |_ `  ( x 
 /  A ) )  +  1 ) ... ( |_ `  x ) ) ) )
 
Theorempntrlog2bndlem6 25272* Lemma for pntrlog2bnd 25273. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
 |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i
 )  x.  ( ( log `  i )  +  (ψ `  ( a  /  i ) ) ) ) )   &    |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
 ) )  <_  B )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   =>    |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x ) )  e.  <_O(1) )
 
Theorempntrlog2bnd 25273* A bound on  R ( x ) log ^ 2 ( x ). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |-  ( ( A  e.  RR  /\  1  <_  A )  ->  E. c  e.  RR+  A. x  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  x ) )  x.  ( log `  x ) )  -  (
 ( 2  /  ( log `  x ) )  x.  sum_ n  e.  (
 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n ) ) ) )  /  x ) 
 <_  c )
 
Theorempntpbnd1a 25274* Lemma for pntpbnd 25277. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )   &    |-  X  =  ( exp `  (
 2  /  E )
 )   &    |-  ( ph  ->  Y  e.  ( X (,) +oo ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( Y  <  N 
 /\  N  <_  ( K  x.  Y ) ) )   &    |-  ( ph  ->  ( abs `  ( R `  N ) )  <_  ( abs `  ( ( R `  ( N  +  1 ) )  -  ( R `  N ) ) ) )   =>    |-  ( ph  ->  ( abs `  ( ( R `  N )  /  N ) )  <_  E )
 
Theorempntpbnd1 25275* Lemma for pntpbnd 25277. (Contributed by Mario Carneiro, 11-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )   &    |-  X  =  ( exp `  (
 2  /  E )
 )   &    |-  ( ph  ->  Y  e.  ( X (,) +oo ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ y  e.  (
 i ... j ) ( ( R `  y
 )  /  ( y  x.  ( y  +  1 ) ) ) ) 
 <_  A )   &    |-  C  =  ( A  +  2 )   &    |-  ( ph  ->  K  e.  ( ( exp `  ( C  /  E ) ) [,) +oo ) )   &    |-  ( ph  ->  -.  E. y  e.  NN  ( ( Y  <  y  /\  y  <_  ( K  x.  Y ) )  /\  ( abs `  ( ( R `  y )  /  y
 ) )  <_  E ) )   =>    |-  ( ph  ->  sum_ n  e.  ( ( ( |_ `  Y )  +  1 ) ... ( |_ `  ( K  x.  Y ) ) ) ( abs `  ( ( R `  n )  /  ( n  x.  ( n  +  1 )
 ) ) )  <_  A )
 
Theorempntpbnd2 25276* Lemma for pntpbnd 25277. (Contributed by Mario Carneiro, 11-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )   &    |-  X  =  ( exp `  (
 2  /  E )
 )   &    |-  ( ph  ->  Y  e.  ( X (,) +oo ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ y  e.  (
 i ... j ) ( ( R `  y
 )  /  ( y  x.  ( y  +  1 ) ) ) ) 
 <_  A )   &    |-  C  =  ( A  +  2 )   &    |-  ( ph  ->  K  e.  ( ( exp `  ( C  /  E ) ) [,) +oo ) )   &    |-  ( ph  ->  -.  E. y  e.  NN  ( ( Y  <  y  /\  y  <_  ( K  x.  Y ) )  /\  ( abs `  ( ( R `  y )  /  y
 ) )  <_  E ) )   =>    |- 
 -.  ph
 
Theorempntpbnd 25277* Lemma for pnt 25303. Establish smallness of  R at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
 c  /  e )
 ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
 ) )  /\  ( abs `  ( ( R `
  n )  /  n ) )  <_  e )
 
Theorempntibndlem1 25278 Lemma for pntibnd 25282. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   =>    |-  ( ph  ->  L  e.  ( 0 (,) 1
 ) )
 
Theorempntibndlem2a 25279* Lemma for pntibndlem2 25280. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  (
 ( R `  x )  /  x ) ) 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  K  =  ( exp `  ( B  /  ( E  /  2
 ) ) )   &    |-  C  =  ( ( 2  x.  B )  +  ( log `  2 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1
 ) )   &    |-  ( ph  ->  Z  e.  RR+ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ( ph  /\  u  e.  ( N [,] ( ( 1  +  ( L  x.  E ) )  x.  N ) ) ) 
 ->  ( u  e.  RR  /\  N  <_  u  /\  u  <_  ( ( 1  +  ( L  x.  E ) )  x.  N ) ) )
 
Theorempntibndlem2 25280* Lemma for pntibnd 25282. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  (
 ( R `  x )  /  x ) ) 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  K  =  ( exp `  ( B  /  ( E  /  2
 ) ) )   &    |-  C  =  ( ( 2  x.  B )  +  ( log `  2 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1
 ) )   &    |-  ( ph  ->  Z  e.  RR+ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  ( 1 (,) +oo ) A. y  e.  ( x [,] ( 2  x.  x ) ) ( (ψ `  y )  -  (ψ `  x )
 )  <_  ( (
 2  x.  ( y  -  x ) )  +  ( T  x.  ( x  /  ( log `  x ) ) ) ) )   &    |-  X  =  ( ( exp `  ( T  /  ( E  / 
 4 ) ) )  +  Z )   &    |-  ( ph  ->  M  e.  (
 ( exp `  ( C  /  E ) ) [,) +oo ) )   &    |-  ( ph  ->  Y  e.  ( X (,) +oo ) )   &    |-  ( ph  ->  ( ( Y  <  N  /\  N  <_  ( ( M  /  2 )  x.  Y ) )  /\  ( abs `  ( ( R `  N )  /  N ) )  <_  ( E  /  2
 ) ) )   =>    |-  ( ph  ->  E. z  e.  RR+  ( ( Y  <  z  /\  ( ( 1  +  ( L  x.  E ) )  x.  z
 )  <  ( M  x.  Y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
 
Theorempntibndlem3 25281* Lemma for pntibnd 25282. Package up pntibndlem2 25280 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  L  =  ( ( 1  /  4
 )  /  ( A  +  3 ) )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  (
 ( R `  x )  /  x ) ) 
 <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  K  =  ( exp `  ( B  /  ( E  /  2
 ) ) )   &    |-  C  =  ( ( 2  x.  B )  +  ( log `  2 ) )   &    |-  ( ph  ->  E  e.  ( 0 (,) 1
 ) )   &    |-  ( ph  ->  Z  e.  RR+ )   &    |-  ( ph  ->  A. m  e.  ( K [,) +oo ) A. v  e.  ( Z (,) +oo ) E. i  e.  NN  ( ( v  < 
 i  /\  i  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  i )  /  i
 ) )  <_  ( E  /  2 ) ) )   =>    |-  ( ph  ->  E. x  e.  RR+  A. k  e.  (
 ( exp `  ( C  /  E ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
 
Theorempntibnd 25282* Lemma for pnt 25303. Establish smallness of  R on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   =>    |- 
 E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  (
 ( exp `  ( c  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( l  x.  e ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
 ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
 
Theorempntlemd 25283 Lemma for pnt 25303. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  A is C^*,  B is c1,  L is λ,  D is c2, and  F is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   =>    |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
 
Theorempntlemc 25284* Lemma for pnt 25303. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  U is α,  E is ε, and  K is K. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   =>    |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1
 )  /\  1  <  K 
 /\  ( U  -  E )  e.  RR+ )
 ) )
 
Theorempntlema 25285* Lemma for pnt 25303. Closure for the constants used in the proof. The mammoth expression  W is a number large enough to satisfy all the lower bounds needed for  Z. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Y is x2,  X is x1,  C is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and  W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   =>    |-  ( ph  ->  W  e.  RR+ )
 
Theorempntlemb 25286* Lemma for pnt 25303. Unpack all the lower bounds contained in  W, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Z is x. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   =>    |-  ( ph  ->  ( Z  e.  RR+  /\  (
 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_  ( Z  /  Y ) )  /\  ( ( 4  /  ( L  x.  E ) )  <_  ( sqr `  Z )  /\  (
 ( ( log `  X )  /  ( log `  K ) )  +  2
 )  <_  ( (
 ( log `  Z )  /  ( log `  K ) )  /  4
 )  /\  ( ( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
 2 ) )  /  (; 3 2  x.  B ) ) )  x.  ( log `  Z ) ) ) ) )
 
Theorempntlemg 25287* Lemma for pnt 25303. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  M is j^* and  N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   =>    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  ( ( ( log `  Z )  /  ( log `  K ) ) 
 /  4 )  <_  ( N  -  M ) ) )
 
Theorempntlemh 25288* Lemma for pnt 25303. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   =>    |-  ( ( ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J )  /\  ( K ^ J )  <_  ( sqr `  Z )
 ) )
 
Theorempntlemn 25289* Lemma for pnt 25303. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   =>    |-  ( ( ph  /\  ( J  e.  NN  /\  J  <_  ( Z  /  Y ) ) )  -> 
 0  <_  ( (
 ( U  /  J )  -  ( abs `  (
 ( R `  ( Z  /  J ) ) 
 /  Z ) ) )  x.  ( log `  J ) ) )
 
Theorempntlemq 25290* Lemma for pntlemj 25292. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   &    |-  ( ph  ->  V  e.  RR+ )   &    |-  ( ph  ->  ( ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E ) )  x.  V )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  J  e.  ( M..^ N ) )   &    |-  I  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  V ) ) )   =>    |-  ( ph  ->  I  C_  O )
 
Theorempntlemr 25291* Lemma for pntlemj 25292. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   &    |-  ( ph  ->  V  e.  RR+ )   &    |-  ( ph  ->  ( ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E ) )  x.  V )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  J  e.  ( M..^ N ) )   &    |-  I  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  V ) ) )   =>    |-  ( ph  ->  (
 ( U  -  E )  x.  ( ( ( L  x.  E ) 
 /  8 )  x.  ( log `  Z ) ) )  <_  ( ( # `  I
 )  x.  ( ( U  -  E )  x.  ( ( log `  ( Z  /  V ) )  /  ( Z  /  V ) ) ) ) )
 
Theorempntlemj 25292* Lemma for pnt 25303. The induction step. Using pntibnd 25282, we find an interval in  K ^ J ... K ^ ( J  + 
1 ) which is sufficiently large and has a much smaller value,  R ( z )  / 
z  <_  E (instead of our original bound 
R ( z )  /  z  <_  U). (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   &    |-  ( ph  ->  V  e.  RR+ )   &    |-  ( ph  ->  ( ( ( K ^ J )  <  V  /\  ( ( 1  +  ( L  x.  E ) )  x.  V )  <  ( K  x.  ( K ^ J ) ) )  /\  A. u  e.  ( V [,] ( ( 1  +  ( L  x.  E ) )  x.  V ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  J  e.  ( M..^ N ) )   &    |-  I  =  ( ( ( |_ `  ( Z  /  ( ( 1  +  ( L  x.  E ) )  x.  V ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  V ) ) )   =>    |-  ( ph  ->  (
 ( U  -  E )  x.  ( ( ( L  x.  E ) 
 /  8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  ( ( R `
  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
 
Theorempntlemi 25293* Lemma for pnt 25303. Eliminate some assumptions from pntlemj 25292. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  O  =  ( ( ( |_ `  ( Z  /  ( K ^
 ( J  +  1 ) ) ) )  +  1 ) ... ( |_ `  ( Z 
 /  ( K ^ J ) ) ) )   =>    |-  ( ( ph  /\  J  e.  ( M..^ N ) )  ->  ( ( U  -  E )  x.  ( ( ( L  x.  E )  / 
 8 )  x.  ( log `  Z ) ) )  <_  sum_ n  e.  O  ( ( ( U  /  n )  -  ( abs `  (
 ( R `  ( Z  /  n ) ) 
 /  Z ) ) )  x.  ( log `  n ) ) )
 
Theorempntlemf 25294* Lemma for pnt 25303. Add up the pieces in pntlemi 25293 to get an estimate slightly better than the naive lower bound  0. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   =>    |-  ( ph  ->  (
 ( U  -  E )  x.  ( ( ( L  x.  ( E ^ 2 ) ) 
 /  (; 3 2  x.  B ) )  x.  (
 ( log `  Z ) ^ 2 ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( Z  /  Y ) ) ) ( ( ( U 
 /  n )  -  ( abs `  ( ( R `  ( Z  /  n ) )  /  Z ) ) )  x.  ( log `  n ) ) )
 
Theorempntlemk 25295* Lemma for pnt 25303. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   =>    |-  ( ph  ->  (
 2  x.  sum_ n  e.  ( 1 ... ( |_ `  ( Z  /  Y ) ) ) ( ( U  /  n )  x.  ( log `  n ) ) )  <_  ( ( U  x.  ( ( log `  Z )  +  3 ) )  x.  ( log `  Z ) ) )
 
Theorempntlemo 25296* Lemma for pnt 25303. Combine all the estimates to establish a smaller eventual bound on  R ( Z )  /  Z. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  Z  e.  ( W [,) +oo )
 )   &    |-  M  =  ( ( |_ `  ( ( log `  X )  /  ( log `  K ) ) )  +  1 )   &    |-  N  =  ( |_ `  ( ( ( log `  Z )  /  ( log `  K ) )  /  2
 ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   &    |-  ( ph  ->  A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( K  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  A. z  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  z ) )  x.  ( log `  z
 ) )  -  (
 ( 2  /  ( log `  z ) )  x.  sum_ i  e.  (
 1 ... ( |_ `  (
 z  /  Y )
 ) ) ( ( abs `  ( R `  ( z  /  i
 ) ) )  x.  ( log `  i
 ) ) ) ) 
 /  z )  <_  C )   =>    |-  ( ph  ->  ( abs `  ( ( R `
  Z )  /  Z ) )  <_  ( U  -  ( F  x.  ( U ^
 3 ) ) ) )
 
Theorempntleme 25297* Lemma for pnt 25303. Package up pntlemo 25296 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  W  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  ( (
 (; 3 2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
 ( U  x.  3
 )  +  C ) ) ) ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  (
 ( R `  z
 )  /  z )
 )  <_  U )   &    |-  ( ph  ->  A. k  e.  ( K [,) +oo ) A. y  e.  ( X (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  E ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )   &    |-  ( ph  ->  A. z  e.  ( 1 (,) +oo ) ( ( ( ( abs `  ( R `  z ) )  x.  ( log `  z
 ) )  -  (
 ( 2  /  ( log `  z ) )  x.  sum_ i  e.  (
 1 ... ( |_ `  (
 z  /  Y )
 ) ) ( ( abs `  ( R `  ( z  /  i
 ) ) )  x.  ( log `  i
 ) ) ) ) 
 /  z )  <_  C )   =>    |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v
 ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
 
Theorempntlem3 25298* Lemma for pnt 25303. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )   &    |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  (
 y [,) +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  t }   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  u  e.  T ) 
 ->  ( u  -  ( C  x.  ( u ^
 3 ) ) )  e.  T )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
 
Theorempntlemp 25299* Lemma for pnt 25303. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  e ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
 ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )   &    |-  ( ph  ->  U  e.  RR+ )   &    |-  ( ph  ->  U 
 <_  A )   &    |-  E  =  ( U  /  D )   &    |-  K  =  ( exp `  ( B  /  E ) )   &    |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y ) )   &    |-  ( ph  ->  A. z  e.  ( Y [,) +oo ) ( abs `  ( ( R `  z )  /  z
 ) )  <_  U )   =>    |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,) +oo ) ( abs `  ( ( R `  v )  /  v
 ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
 
Theorempntleml 25300* Lemma for pnt 25303. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
 |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a
 ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )   &    |-  D  =  ( A  +  1 )   &    |-  F  =  ( ( 1  -  (
 1  /  D )
 )  x.  ( ( L  /  (; 3 2  x.  B ) )  /  ( D ^ 2 ) ) )   &    |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,) +oo ) A. y  e.  ( x (,) +oo ) E. z  e.  RR+  ( ( y  < 
 z  /\  ( (
 1  +  ( L  x.  e ) )  x.  z )  < 
 ( k  x.  y
 ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
 ) )  x.  z
 ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )   =>    |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >