Proof of Theorem selbergr
| Step | Hyp | Ref
| Expression |
| 1 | | reex 10027 |
. . . . . . 7
 |
| 2 | | rpssre 11843 |
. . . . . . 7
 |
| 3 | 1, 2 | ssexi 4803 |
. . . . . 6
 |
| 4 | 3 | a1i 11 |
. . . . 5
  |
| 5 | | ovexd 6680 |
. . . . 5
 
    ψ                  Λ  ψ 
              |
| 6 | | ovexd 6680 |
. . . . 5
 
 
          Λ          |
| 7 | | eqidd 2623 |
. . . . 5
     ψ       
          Λ  ψ                    ψ                  Λ  ψ 
               |
| 8 | | eqidd 2623 |
. . . . 5
             Λ                      Λ           |
| 9 | 4, 5, 6, 7, 8 | offval2 6914 |
. . . 4
      ψ                  Λ  ψ 
                           Λ                ψ                  Λ  ψ 
             
          Λ            |
| 10 | 9 | trud 1493 |
. . 3
      ψ                  Λ  ψ 
                           Λ                ψ                  Λ  ψ 
             
          Λ           |
| 11 | | pntrval.r |
. . . . . . . . . . . 12
  ψ     |
| 12 | 11 | pntrf 25252 |
. . . . . . . . . . 11
     |
| 13 | 12 | ffvelrni 6358 |
. . . . . . . . . 10

      |
| 14 | 13 | recnd 10068 |
. . . . . . . . 9

      |
| 15 | | relogcl 24322 |
. . . . . . . . . 10

      |
| 16 | 15 | recnd 10068 |
. . . . . . . . 9

      |
| 17 | 14, 16 | mulcld 10060 |
. . . . . . . 8

            |
| 18 | | fzfid 12772 |
. . . . . . . . 9

          |
| 19 | | elfznn 12370 |
. . . . . . . . . . . . 13
           |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . 12
          
  |
| 21 | | vmacl 24844 |
. . . . . . . . . . . 12
 Λ    |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
          
Λ    |
| 23 | 22 | recnd 10068 |
. . . . . . . . . 10
          
Λ    |
| 24 | | rpre 11839 |
. . . . . . . . . . . . 13

  |
| 25 | | nndivre 11056 |
. . . . . . . . . . . . 13
 
     |
| 26 | 24, 19, 25 | syl2an 494 |
. . . . . . . . . . . 12
          
    |
| 27 | | chpcl 24850 |
. . . . . . . . . . . 12
   ψ      |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
          
ψ      |
| 29 | 28 | recnd 10068 |
. . . . . . . . . 10
          
ψ      |
| 30 | 23, 29 | mulcld 10060 |
. . . . . . . . 9
          
 Λ  ψ       |
| 31 | 18, 30 | fsumcl 14464 |
. . . . . . . 8

           Λ  ψ 
     |
| 32 | 17, 31 | addcld 10059 |
. . . . . . 7

                      Λ  ψ 
      |
| 33 | | rpcn 11841 |
. . . . . . 7

  |
| 34 | | rpne0 11848 |
. . . . . . 7

  |
| 35 | 32, 33, 34 | divcld 10801 |
. . . . . 6

                       Λ  ψ 
       |
| 36 | 22, 20 | nndivred 11069 |
. . . . . . . 8
          
 Λ     |
| 37 | 36 | recnd 10068 |
. . . . . . 7
          
 Λ     |
| 38 | 18, 37 | fsumcl 14464 |
. . . . . 6

           Λ     |
| 39 | 35, 38, 16 | nnncan2d 10427 |
. . . . 5

              
          Λ  ψ                        Λ                                 Λ  ψ 
                Λ      |
| 40 | | chpcl 24850 |
. . . . . . . . . . . . 13
 ψ    |
| 41 | 24, 40 | syl 17 |
. . . . . . . . . . . 12

ψ    |
| 42 | 41 | recnd 10068 |
. . . . . . . . . . 11

ψ    |
| 43 | 42, 16 | mulcld 10060 |
. . . . . . . . . 10

 ψ         |
| 44 | 43, 31 | addcld 10059 |
. . . . . . . . 9

  ψ       
          Λ  ψ        |
| 45 | 44, 33, 34 | divcld 10801 |
. . . . . . . 8

   ψ                  Λ  ψ 
       |
| 46 | 45, 16, 16 | subsub4d 10423 |
. . . . . . 7

     ψ                  Λ  ψ 
                   ψ       
          Λ  ψ                    |
| 47 | 11 | pntrval 25251 |
. . . . . . . . . . . . . 14

     ψ     |
| 48 | 47 | oveq1d 6665 |
. . . . . . . . . . . . 13

            ψ          |
| 49 | 42, 33, 16 | subdird 10487 |
. . . . . . . . . . . . 13

  ψ          ψ                |
| 50 | 48, 49 | eqtrd 2656 |
. . . . . . . . . . . 12

            ψ       
        |
| 51 | 50 | oveq1d 6665 |
. . . . . . . . . . 11

                      Λ  ψ 
       ψ                         Λ  ψ 
      |
| 52 | 33, 16 | mulcld 10060 |
. . . . . . . . . . . 12

        |
| 53 | 43, 31, 52 | addsubd 10413 |
. . . . . . . . . . 11

   ψ                  Λ  ψ 
              ψ                         Λ  ψ 
      |
| 54 | 51, 53 | eqtr4d 2659 |
. . . . . . . . . 10

                      Λ  ψ 
       ψ       
          Λ  ψ               |
| 55 | 54 | oveq1d 6665 |
. . . . . . . . 9

                       Λ  ψ 
         ψ       
          Λ  ψ                |
| 56 | | rpcnne0 11850 |
. . . . . . . . . 10

    |
| 57 | | divsubdir 10721 |
. . . . . . . . . 10
    ψ                  Λ  ψ 
                 ψ       
          Λ  ψ                  ψ       
          Λ  ψ                  |
| 58 | 44, 52, 56, 57 | syl3anc 1326 |
. . . . . . . . 9

    ψ                  Λ  ψ 
                ψ                  Λ  ψ 
                |
| 59 | 16, 33, 34 | divcan3d 10806 |
. . . . . . . . . 10

              |
| 60 | 59 | oveq2d 6666 |
. . . . . . . . 9

    ψ                  Λ  ψ 
                  ψ                  Λ  ψ 
            |
| 61 | 55, 58, 60 | 3eqtrd 2660 |
. . . . . . . 8

                       Λ  ψ 
         ψ       
          Λ  ψ              |
| 62 | 61 | oveq1d 6665 |
. . . . . . 7

             
          Λ  ψ                 ψ                  Λ  ψ 
                 |
| 63 | 16 | 2timesd 11275 |
. . . . . . . 8

                  |
| 64 | 63 | oveq2d 6666 |
. . . . . . 7

    ψ                  Λ  ψ 
                ψ                  Λ  ψ 
                  |
| 65 | 46, 62, 64 | 3eqtr4d 2666 |
. . . . . 6

             
          Λ  ψ                ψ       
          Λ  ψ                |
| 66 | 65 | oveq1d 6665 |
. . . . 5

              
          Λ  ψ                        Λ              ψ                  Λ  ψ 
             
          Λ           |
| 67 | 33, 38 | mulcld 10060 |
. . . . . . 7

            Λ      |
| 68 | | divsubdir 10721 |
. . . . . . 7
             
          Λ  ψ       
          Λ                               Λ  ψ 
                Λ                   
          Λ  ψ                    Λ        |
| 69 | 32, 67, 56, 68 | syl3anc 1326 |
. . . . . 6

             
          Λ  ψ                  Λ                   
          Λ  ψ                    Λ        |
| 70 | 17, 31, 67 | addsubassd 10412 |
. . . . . . . 8

                       Λ  ψ 
                Λ                            Λ  ψ 
   
           Λ        |
| 71 | 33 | adantr 481 |
. . . . . . . . . . . 12
          
  |
| 72 | 71, 37 | mulcld 10060 |
. . . . . . . . . . 11
          
  Λ      |
| 73 | 18, 30, 72 | fsumsub 14520 |
. . . . . . . . . 10

            Λ  ψ 
   
 Λ                 Λ  ψ 
               Λ       |
| 74 | 26 | recnd 10068 |
. . . . . . . . . . . . 13
          
    |
| 75 | 23, 29, 74 | subdid 10486 |
. . . . . . . . . . . 12
          
 Λ   ψ          Λ  ψ      Λ        |
| 76 | 19 | nnrpd 11870 |
. . . . . . . . . . . . . . 15
           |
| 77 | | rpdivcl 11856 |
. . . . . . . . . . . . . . 15
       |
| 78 | 76, 77 | sylan2 491 |
. . . . . . . . . . . . . 14
          
    |
| 79 | 11 | pntrval 25251 |
. . . . . . . . . . . . . 14
  
       ψ         |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . . . 13
          
       ψ         |
| 81 | 80 | oveq2d 6666 |
. . . . . . . . . . . 12
          
 Λ          Λ   ψ          |
| 82 | 20 | nnrpd 11870 |
. . . . . . . . . . . . . . 15
          
  |
| 83 | | rpcnne0 11850 |
. . . . . . . . . . . . . . 15

    |
| 84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . 14
          
    |
| 85 | | div12 10707 |
. . . . . . . . . . . . . 14
  Λ       Λ     Λ       |
| 86 | 71, 23, 84, 85 | syl3anc 1326 |
. . . . . . . . . . . . 13
          
  Λ     Λ       |
| 87 | 86 | oveq2d 6666 |
. . . . . . . . . . . 12
          
  Λ  ψ       Λ       Λ  ψ 
    Λ        |
| 88 | 75, 81, 87 | 3eqtr4d 2666 |
. . . . . . . . . . 11
          
 Λ           Λ  ψ       Λ       |
| 89 | 88 | sumeq2dv 14433 |
. . . . . . . . . 10

           Λ                     Λ  ψ 
   
 Λ       |
| 90 | 18, 33, 37 | fsummulc2 14516 |
. . . . . . . . . . 11

            Λ                Λ      |
| 91 | 90 | oveq2d 6666 |
. . . . . . . . . 10

 
          Λ  ψ                 Λ                 Λ  ψ 
               Λ       |
| 92 | 73, 89, 91 | 3eqtr4rd 2667 |
. . . . . . . . 9

 
          Λ  ψ                 Λ     
          Λ           |
| 93 | 92 | oveq2d 6666 |
. . . . . . . 8

                       Λ  ψ 
   
           Λ                 
          Λ            |
| 94 | 70, 93 | eqtrd 2656 |
. . . . . . 7

                       Λ  ψ 
                Λ                           Λ            |
| 95 | 94 | oveq1d 6665 |
. . . . . 6

             
          Λ  ψ                  Λ                             Λ             |
| 96 | 38, 33, 34 | divcan3d 10806 |
. . . . . . 7

             Λ                Λ     |
| 97 | 96 | oveq2d 6666 |
. . . . . 6

             
          Λ  ψ                    Λ                   
          Λ  ψ                  Λ      |
| 98 | 69, 95, 97 | 3eqtr3rd 2665 |
. . . . 5

             
          Λ  ψ                  Λ                           Λ             |
| 99 | 39, 66, 98 | 3eqtr3d 2664 |
. . . 4

     ψ                  Λ  ψ 
             
          Λ                     
          Λ             |
| 100 | 99 | mpteq2ia 4740 |
. . 3

     ψ                  Λ  ψ 
             
          Λ                       
          Λ             |
| 101 | 10, 100 | eqtri 2644 |
. 2
      ψ                  Λ  ψ 
                           Λ                                  Λ             |
| 102 | | selberg2 25240 |
. . 3

    ψ                  Λ  ψ 
                 |
| 103 | | vmadivsum 25171 |
. . 3

 
          Λ             |
| 104 | | o1sub 14346 |
. . 3
       ψ       
          Λ  ψ                  
 
          Λ              
    ψ                  Λ  ψ 
                           Λ               |
| 105 | 102, 103,
104 | mp2an 708 |
. 2
      ψ                  Λ  ψ 
                           Λ              |
| 106 | 101, 105 | eqeltrri 2698 |
1

                       Λ                |