MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotval Structured version   Visualization version   Unicode version

Theorem quotval 24047
Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypothesis
Ref Expression
quotval.1  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
Assertion
Ref Expression
quotval  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  ( F quot  G )  =  (
iota_ q  e.  (Poly `  CC ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
Distinct variable groups:    F, q    G, q
Allowed substitution hints:    R( q)    S( q)

Proof of Theorem quotval
Dummy variables  f 
g  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 23956 . . 3  |-  (Poly `  S )  C_  (Poly `  CC )
21sseli 3599 . 2  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
31sseli 3599 . . 3  |-  ( G  e.  (Poly `  S
)  ->  G  e.  (Poly `  CC ) )
4 eldifsn 4317 . . . . 5  |-  ( G  e.  ( (Poly `  CC )  \  { 0p } )  <->  ( G  e.  (Poly `  CC )  /\  G  =/=  0p ) )
5 oveq1 6657 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
g  oF  x.  q )  =  ( G  oF  x.  q ) )
6 oveq12 6659 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  ( g  oF  x.  q )  =  ( G  oF  x.  q ) )  ->  ( f  oF  -  ( g  oF  x.  q
) )  =  ( F  oF  -  ( G  oF  x.  q ) ) )
75, 6sylan2 491 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f  oF  -  ( g  oF  x.  q ) )  =  ( F  oF  -  ( G  oF  x.  q
) ) )
8 quotval.1 . . . . . . . . . 10  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
97, 8syl6eqr 2674 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f  oF  -  ( g  oF  x.  q ) )  =  R )
109sbceq1d 3440 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( [. ( f  oF  -  (
g  oF  x.  q ) )  / 
r ]. ( r  =  0p  \/  (deg `  r )  <  (deg `  g ) )  <->  [. R  / 
r ]. ( r  =  0p  \/  (deg `  r )  <  (deg `  g ) ) ) )
11 ovex 6678 . . . . . . . . . . 11  |-  ( F  oF  -  ( G  oF  x.  q
) )  e.  _V
128, 11eqeltri 2697 . . . . . . . . . 10  |-  R  e. 
_V
13 eqeq1 2626 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
r  =  0p  <-> 
R  =  0p ) )
14 fveq2 6191 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (deg `  r )  =  (deg
`  R ) )
1514breq1d 4663 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
(deg `  r )  <  (deg `  g )  <->  (deg
`  R )  < 
(deg `  g )
) )
1613, 15orbi12d 746 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( r  =  0p  \/  (deg `  r )  <  (deg `  g ) )  <->  ( R  =  0p  \/  (deg `  R )  <  (deg `  g )
) ) )
1712, 16sbcie 3470 . . . . . . . . 9  |-  ( [. R  /  r ]. (
r  =  0p  \/  (deg `  r
)  <  (deg `  g
) )  <->  ( R  =  0p  \/  (deg `  R )  <  (deg `  g )
) )
18 simpr 477 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
1918fveq2d 6195 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  (deg `  g )  =  (deg `  G )
)
2019breq2d 4665 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( (deg `  R
)  <  (deg `  g
)  <->  (deg `  R )  <  (deg `  G )
) )
2120orbi2d 738 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( R  =  0p  \/  (deg `  R )  <  (deg `  g ) )  <->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
2217, 21syl5bb 272 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( [. R  / 
r ]. ( r  =  0p  \/  (deg `  r )  <  (deg `  g ) )  <->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
2310, 22bitrd 268 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( [. ( f  oF  -  (
g  oF  x.  q ) )  / 
r ]. ( r  =  0p  \/  (deg `  r )  <  (deg `  g ) )  <->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
2423riotabidv 6613 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( iota_ q  e.  (Poly `  CC ) [. (
f  oF  -  ( g  oF  x.  q ) )  /  r ]. (
r  =  0p  \/  (deg `  r
)  <  (deg `  g
) ) )  =  ( iota_ q  e.  (Poly `  CC ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
25 df-quot 24046 . . . . . 6  |- quot  =  ( f  e.  (Poly `  CC ) ,  g  e.  ( (Poly `  CC )  \  { 0p } )  |->  ( iota_ q  e.  (Poly `  CC ) [. ( f  oF  -  ( g  oF  x.  q
) )  /  r ]. ( r  =  0p  \/  (deg `  r )  <  (deg `  g ) ) ) )
26 riotaex 6615 . . . . . 6  |-  ( iota_ q  e.  (Poly `  CC ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) )  e.  _V
2724, 25, 26ovmpt2a 6791 . . . . 5  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  ( (Poly `  CC )  \  { 0p } ) )  -> 
( F quot  G )  =  ( iota_ q  e.  (Poly `  CC )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) )
284, 27sylan2br 493 . . . 4  |-  ( ( F  e.  (Poly `  CC )  /\  ( G  e.  (Poly `  CC )  /\  G  =/=  0p ) )  -> 
( F quot  G )  =  ( iota_ q  e.  (Poly `  CC )
( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) )
29283impb 1260 . . 3  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0p )  ->  ( F quot  G )  =  (
iota_ q  e.  (Poly `  CC ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
303, 29syl3an2 1360 . 2  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  ( F quot  G )  =  (
iota_ q  e.  (Poly `  CC ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
312, 30syl3an1 1359 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  ( F quot  G )  =  (
iota_ q  e.  (Poly `  CC ) ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   [.wsbc 3435    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888   iota_crio 6610  (class class class)co 6650    oFcof 6895   CCcc 9934    x. cmul 9941    < clt 10074    - cmin 10266   0pc0p 23436  Polycply 23940  degcdgr 23943   quot cquot 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-map 7859  df-nn 11021  df-n0 11293  df-ply 23944  df-quot 24046
This theorem is referenced by:  quotlem  24055
  Copyright terms: Public domain W3C validator