| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quotval | Structured version Visualization version Unicode version | ||
| Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| Ref | Expression |
|---|---|
| quotval.1 |
|
| Ref | Expression |
|---|---|
| quotval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyssc 23956 |
. . 3
| |
| 2 | 1 | sseli 3599 |
. 2
|
| 3 | 1 | sseli 3599 |
. . 3
|
| 4 | eldifsn 4317 |
. . . . 5
| |
| 5 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 6 | oveq12 6659 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | sylan2 491 |
. . . . . . . . . 10
|
| 8 | quotval.1 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . . 9
|
| 10 | 9 | sbceq1d 3440 |
. . . . . . . 8
|
| 11 | ovex 6678 |
. . . . . . . . . . 11
| |
| 12 | 8, 11 | eqeltri 2697 |
. . . . . . . . . 10
|
| 13 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 14 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 15 | 14 | breq1d 4663 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | orbi12d 746 |
. . . . . . . . . 10
|
| 17 | 12, 16 | sbcie 3470 |
. . . . . . . . 9
|
| 18 | simpr 477 |
. . . . . . . . . . . 12
| |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 20 | 19 | breq2d 4665 |
. . . . . . . . . 10
|
| 21 | 20 | orbi2d 738 |
. . . . . . . . 9
|
| 22 | 17, 21 | syl5bb 272 |
. . . . . . . 8
|
| 23 | 10, 22 | bitrd 268 |
. . . . . . 7
|
| 24 | 23 | riotabidv 6613 |
. . . . . 6
|
| 25 | df-quot 24046 |
. . . . . 6
| |
| 26 | riotaex 6615 |
. . . . . 6
| |
| 27 | 24, 25, 26 | ovmpt2a 6791 |
. . . . 5
|
| 28 | 4, 27 | sylan2br 493 |
. . . 4
|
| 29 | 28 | 3impb 1260 |
. . 3
|
| 30 | 3, 29 | syl3an2 1360 |
. 2
|
| 31 | 2, 30 | syl3an1 1359 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-map 7859 df-nn 11021 df-n0 11293 df-ply 23944 df-quot 24046 |
| This theorem is referenced by: quotlem 24055 |
| Copyright terms: Public domain | W3C validator |