| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgprc | Structured version Visualization version Unicode version | ||
| Description: The value of the
recursive definition generator when |
| Ref | Expression |
|---|---|
| rdgprc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . . 7
| |
| 2 | fveq2 6191 |
. . . . . . 7
| |
| 3 | 1, 2 | eqeq12d 2637 |
. . . . . 6
|
| 4 | 3 | imbi2d 330 |
. . . . 5
|
| 5 | fveq2 6191 |
. . . . . . 7
| |
| 6 | fveq2 6191 |
. . . . . . 7
| |
| 7 | 5, 6 | eqeq12d 2637 |
. . . . . 6
|
| 8 | 7 | imbi2d 330 |
. . . . 5
|
| 9 | fveq2 6191 |
. . . . . . 7
| |
| 10 | fveq2 6191 |
. . . . . . 7
| |
| 11 | 9, 10 | eqeq12d 2637 |
. . . . . 6
|
| 12 | 11 | imbi2d 330 |
. . . . 5
|
| 13 | fveq2 6191 |
. . . . . . 7
| |
| 14 | fveq2 6191 |
. . . . . . 7
| |
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . 6
|
| 16 | 15 | imbi2d 330 |
. . . . 5
|
| 17 | rdgprc0 31699 |
. . . . . 6
| |
| 18 | 0ex 4790 |
. . . . . . 7
| |
| 19 | 18 | rdg0 7517 |
. . . . . 6
|
| 20 | 17, 19 | syl6eqr 2674 |
. . . . 5
|
| 21 | fveq2 6191 |
. . . . . . 7
| |
| 22 | rdgsuc 7520 |
. . . . . . . 8
| |
| 23 | rdgsuc 7520 |
. . . . . . . 8
| |
| 24 | 22, 23 | eqeq12d 2637 |
. . . . . . 7
|
| 25 | 21, 24 | syl5ibr 236 |
. . . . . 6
|
| 26 | 25 | imim2d 57 |
. . . . 5
|
| 27 | r19.21v 2960 |
. . . . . 6
| |
| 28 | limord 5784 |
. . . . . . . . 9
| |
| 29 | ordsson 6989 |
. . . . . . . . 9
| |
| 30 | rdgfnon 7514 |
. . . . . . . . . 10
| |
| 31 | rdgfnon 7514 |
. . . . . . . . . 10
| |
| 32 | fvreseq 6319 |
. . . . . . . . . 10
| |
| 33 | 30, 31, 32 | mpanl12 718 |
. . . . . . . . 9
|
| 34 | 28, 29, 33 | 3syl 18 |
. . . . . . . 8
|
| 35 | rneq 5351 |
. . . . . . . . . . 11
| |
| 36 | df-ima 5127 |
. . . . . . . . . . 11
| |
| 37 | df-ima 5127 |
. . . . . . . . . . 11
| |
| 38 | 35, 36, 37 | 3eqtr4g 2681 |
. . . . . . . . . 10
|
| 39 | 38 | unieqd 4446 |
. . . . . . . . 9
|
| 40 | vex 3203 |
. . . . . . . . . 10
| |
| 41 | rdglim 7522 |
. . . . . . . . . . 11
| |
| 42 | rdglim 7522 |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 44 | 40, 43 | mpan 706 |
. . . . . . . . 9
|
| 45 | 39, 44 | syl5ibr 236 |
. . . . . . . 8
|
| 46 | 34, 45 | sylbird 250 |
. . . . . . 7
|
| 47 | 46 | imim2d 57 |
. . . . . 6
|
| 48 | 27, 47 | syl5bi 232 |
. . . . 5
|
| 49 | 4, 8, 12, 16, 20, 26, 48 | tfinds 7059 |
. . . 4
|
| 50 | 49 | com12 32 |
. . 3
|
| 51 | 50 | ralrimiv 2965 |
. 2
|
| 52 | eqfnfv 6311 |
. . 3
| |
| 53 | 30, 31, 52 | mp2an 708 |
. 2
|
| 54 | 51, 53 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
| This theorem is referenced by: dfrdg3 31702 |
| Copyright terms: Public domain | W3C validator |