| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for ruc 14972
(the reals are uncountable). Substitutions for the
function |
| Ref | Expression |
|---|---|
| ruc.1 |
|
| ruc.2 |
|
| ruclem1.3 |
|
| ruclem1.4 |
|
| ruclem1.5 |
|
| ruclem1.6 |
|
| ruclem1.7 |
|
| Ref | Expression |
|---|---|
| ruclem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.2 |
. . . . . 6
| |
| 2 | 1 | oveqd 6667 |
. . . . 5
|
| 3 | ruclem1.3 |
. . . . . . 7
| |
| 4 | ruclem1.4 |
. . . . . . 7
| |
| 5 | opelxpi 5148 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . 6
|
| 7 | ruclem1.5 |
. . . . . 6
| |
| 8 | simpr 477 |
. . . . . . . . . . 11
| |
| 9 | 8 | breq2d 4665 |
. . . . . . . . . 10
|
| 10 | simpl 473 |
. . . . . . . . . . . 12
| |
| 11 | 10 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 12 | 11 | opeq1d 4408 |
. . . . . . . . . 10
|
| 13 | 10 | fveq2d 6195 |
. . . . . . . . . . . . 13
|
| 14 | 13 | oveq2d 6666 |
. . . . . . . . . . . 12
|
| 15 | 14 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 16 | 15, 13 | opeq12d 4410 |
. . . . . . . . . 10
|
| 17 | 9, 12, 16 | ifbieq12d 4113 |
. . . . . . . . 9
|
| 18 | 17 | csbeq2dv 3992 |
. . . . . . . 8
|
| 19 | 11, 13 | oveq12d 6668 |
. . . . . . . . . 10
|
| 20 | 19 | oveq1d 6665 |
. . . . . . . . 9
|
| 21 | 20 | csbeq1d 3540 |
. . . . . . . 8
|
| 22 | 18, 21 | eqtrd 2656 |
. . . . . . 7
|
| 23 | eqid 2622 |
. . . . . . 7
| |
| 24 | opex 4932 |
. . . . . . . . 9
| |
| 25 | opex 4932 |
. . . . . . . . 9
| |
| 26 | 24, 25 | ifex 4156 |
. . . . . . . 8
|
| 27 | 26 | csbex 4793 |
. . . . . . 7
|
| 28 | 22, 23, 27 | ovmpt2a 6791 |
. . . . . 6
|
| 29 | 6, 7, 28 | syl2anc 693 |
. . . . 5
|
| 30 | 2, 29 | eqtrd 2656 |
. . . 4
|
| 31 | op1stg 7180 |
. . . . . . . . 9
| |
| 32 | 3, 4, 31 | syl2anc 693 |
. . . . . . . 8
|
| 33 | op2ndg 7181 |
. . . . . . . . 9
| |
| 34 | 3, 4, 33 | syl2anc 693 |
. . . . . . . 8
|
| 35 | 32, 34 | oveq12d 6668 |
. . . . . . 7
|
| 36 | 35 | oveq1d 6665 |
. . . . . 6
|
| 37 | 36 | csbeq1d 3540 |
. . . . 5
|
| 38 | ovex 6678 |
. . . . . . 7
| |
| 39 | breq1 4656 |
. . . . . . . 8
| |
| 40 | opeq2 4403 |
. . . . . . . 8
| |
| 41 | oveq1 6657 |
. . . . . . . . . 10
| |
| 42 | 41 | oveq1d 6665 |
. . . . . . . . 9
|
| 43 | 42 | opeq1d 4408 |
. . . . . . . 8
|
| 44 | 39, 40, 43 | ifbieq12d 4113 |
. . . . . . 7
|
| 45 | 38, 44 | csbie 3559 |
. . . . . 6
|
| 46 | 32 | opeq1d 4408 |
. . . . . . 7
|
| 47 | 34 | oveq2d 6666 |
. . . . . . . . 9
|
| 48 | 47 | oveq1d 6665 |
. . . . . . . 8
|
| 49 | 48, 34 | opeq12d 4410 |
. . . . . . 7
|
| 50 | 46, 49 | ifeq12d 4106 |
. . . . . 6
|
| 51 | 45, 50 | syl5eq 2668 |
. . . . 5
|
| 52 | 37, 51 | eqtrd 2656 |
. . . 4
|
| 53 | 30, 52 | eqtrd 2656 |
. . 3
|
| 54 | 3, 4 | readdcld 10069 |
. . . . . 6
|
| 55 | 54 | rehalfcld 11279 |
. . . . 5
|
| 56 | opelxpi 5148 |
. . . . 5
| |
| 57 | 3, 55, 56 | syl2anc 693 |
. . . 4
|
| 58 | 55, 4 | readdcld 10069 |
. . . . . 6
|
| 59 | 58 | rehalfcld 11279 |
. . . . 5
|
| 60 | opelxpi 5148 |
. . . . 5
| |
| 61 | 59, 4, 60 | syl2anc 693 |
. . . 4
|
| 62 | 57, 61 | ifcld 4131 |
. . 3
|
| 63 | 53, 62 | eqeltrd 2701 |
. 2
|
| 64 | ruclem1.6 |
. . 3
| |
| 65 | 53 | fveq2d 6195 |
. . . 4
|
| 66 | fvif 6204 |
. . . . 5
| |
| 67 | op1stg 7180 |
. . . . . . 7
| |
| 68 | 3, 38, 67 | sylancl 694 |
. . . . . 6
|
| 69 | ovex 6678 |
. . . . . . 7
| |
| 70 | op1stg 7180 |
. . . . . . 7
| |
| 71 | 69, 4, 70 | sylancr 695 |
. . . . . 6
|
| 72 | 68, 71 | ifeq12d 4106 |
. . . . 5
|
| 73 | 66, 72 | syl5eq 2668 |
. . . 4
|
| 74 | 65, 73 | eqtrd 2656 |
. . 3
|
| 75 | 64, 74 | syl5eq 2668 |
. 2
|
| 76 | ruclem1.7 |
. . 3
| |
| 77 | 53 | fveq2d 6195 |
. . . 4
|
| 78 | fvif 6204 |
. . . . 5
| |
| 79 | op2ndg 7181 |
. . . . . . 7
| |
| 80 | 3, 38, 79 | sylancl 694 |
. . . . . 6
|
| 81 | op2ndg 7181 |
. . . . . . 7
| |
| 82 | 69, 4, 81 | sylancr 695 |
. . . . . 6
|
| 83 | 80, 82 | ifeq12d 4106 |
. . . . 5
|
| 84 | 78, 83 | syl5eq 2668 |
. . . 4
|
| 85 | 77, 84 | eqtrd 2656 |
. . 3
|
| 86 | 76, 85 | syl5eq 2668 |
. 2
|
| 87 | 63, 75, 86 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 |
| This theorem is referenced by: ruclem2 14961 ruclem3 14962 ruclem6 14964 |
| Copyright terms: Public domain | W3C validator |