MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem1 Structured version   Visualization version   Unicode version

Theorem ruclem1 14960
Description: Lemma for ruc 14972 (the reals are uncountable). Substitutions for the function  D. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Fan Zheng, 6-Jun-2016.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruclem1.3  |-  ( ph  ->  A  e.  RR )
ruclem1.4  |-  ( ph  ->  B  e.  RR )
ruclem1.5  |-  ( ph  ->  M  e.  RR )
ruclem1.6  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
ruclem1.7  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
Assertion
Ref Expression
ruclem1  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    m, F, x, y    m, M, x, y
Allowed substitution hints:    ph( x, y, m)    D( x, y, m)    X( x, y, m)    Y( x, y, m)

Proof of Theorem ruclem1
StepHypRef Expression
1 ruc.2 . . . . . 6  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
21oveqd 6667 . . . . 5  |-  ( ph  ->  ( <. A ,  B >. D M )  =  ( <. A ,  B >. ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) M ) )
3 ruclem1.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
4 ruclem1.4 . . . . . . 7  |-  ( ph  ->  B  e.  RR )
5 opelxpi 5148 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
<. A ,  B >.  e.  ( RR  X.  RR ) )
63, 4, 5syl2anc 693 . . . . . 6  |-  ( ph  -> 
<. A ,  B >.  e.  ( RR  X.  RR ) )
7 ruclem1.5 . . . . . 6  |-  ( ph  ->  M  e.  RR )
8 simpr 477 . . . . . . . . . . 11  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  y  =  M )
98breq2d 4665 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
m  <  y  <->  m  <  M ) )
10 simpl 473 . . . . . . . . . . . 12  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  x  =  <. A ,  B >. )
1110fveq2d 6195 . . . . . . . . . . 11  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  ( 1st `  x )  =  ( 1st `  <. A ,  B >. )
)
1211opeq1d 4408 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  <. ( 1st `  x ) ,  m >.  =  <. ( 1st `  <. A ,  B >. ) ,  m >. )
1310fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  ( 2nd `  x )  =  ( 2nd `  <. A ,  B >. )
)
1413oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
m  +  ( 2nd `  x ) )  =  ( m  +  ( 2nd `  <. A ,  B >. ) ) )
1514oveq1d 6665 . . . . . . . . . . 11  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
( m  +  ( 2nd `  x ) )  /  2 )  =  ( ( m  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) )
1615, 13opeq12d 4410 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  <. (
( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >.  =  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
179, 12, 16ifbieq12d 4113 . . . . . . . . 9  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. )  =  if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
1817csbeq2dv 3992 . . . . . . . 8  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  [_ (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  /  m ]_ if ( m  < 
y ,  <. ( 1st `  x ) ,  m >. ,  <. (
( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. )  =  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
1911, 13oveq12d 6668 . . . . . . . . . 10  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
( 1st `  x
)  +  ( 2nd `  x ) )  =  ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
) )
2019oveq1d 6665 . . . . . . . . 9  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  =  ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) )
2120csbeq1d 3540 . . . . . . . 8  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  [_ (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
2218, 21eqtrd 2656 . . . . . . 7  |-  ( ( x  =  <. A ,  B >.  /\  y  =  M )  ->  [_ (
( ( 1st `  x
)  +  ( 2nd `  x ) )  / 
2 )  /  m ]_ if ( m  < 
y ,  <. ( 1st `  x ) ,  m >. ,  <. (
( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. )  =  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  /  2
)  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
23 eqid 2622 . . . . . . 7  |-  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) )  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) )
24 opex 4932 . . . . . . . . 9  |-  <. ( 1st `  <. A ,  B >. ) ,  m >.  e. 
_V
25 opex 4932 . . . . . . . . 9  |-  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >.  e.  _V
2624, 25ifex 4156 . . . . . . . 8  |-  if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  e.  _V
2726csbex 4793 . . . . . . 7  |-  [_ (
( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  e.  _V
2822, 23, 27ovmpt2a 6791 . . . . . 6  |-  ( (
<. A ,  B >.  e.  ( RR  X.  RR )  /\  M  e.  RR )  ->  ( <. A ,  B >. ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) M )  =  [_ (
( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
296, 7, 28syl2anc 693 . . . . 5  |-  ( ph  ->  ( <. A ,  B >. ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) M )  =  [_ (
( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
302, 29eqtrd 2656 . . . 4  |-  ( ph  ->  ( <. A ,  B >. D M )  = 
[_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
31 op1stg 7180 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1st `  <. A ,  B >. )  =  A )
323, 4, 31syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 1st `  <. A ,  B >. )  =  A )
33 op2ndg 7181 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2nd `  <. A ,  B >. )  =  B )
343, 4, 33syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. A ,  B >. )  =  B )
3532, 34oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. )
)  =  ( A  +  B ) )
3635oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  /  2
)  =  ( ( A  +  B )  /  2 ) )
3736csbeq1d 3540 . . . . 5  |-  ( ph  ->  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  [_ ( ( A  +  B )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
)
38 ovex 6678 . . . . . . 7  |-  ( ( A  +  B )  /  2 )  e. 
_V
39 breq1 4656 . . . . . . . 8  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  (
m  <  M  <->  ( ( A  +  B )  /  2 )  < 
M ) )
40 opeq2 4403 . . . . . . . 8  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  <. ( 1st `  <. A ,  B >. ) ,  m >.  = 
<. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  / 
2 ) >. )
41 oveq1 6657 . . . . . . . . . 10  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  (
m  +  ( 2nd `  <. A ,  B >. ) )  =  ( ( ( A  +  B )  /  2
)  +  ( 2nd `  <. A ,  B >. ) ) )
4241oveq1d 6665 . . . . . . . . 9  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  =  ( ( ( ( A  +  B )  / 
2 )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) )
4342opeq1d 4408 . . . . . . . 8  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >.  =  <. ( ( ( ( A  +  B )  / 
2 )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
4439, 40, 43ifbieq12d 4113 . . . . . . 7  |-  ( m  =  ( ( A  +  B )  / 
2 )  ->  if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >. ) )
4538, 44csbie 3559 . . . . . 6  |-  [_ (
( A  +  B
)  /  2 )  /  m ]_ if ( m  <  M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. ,  <. (
( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >. )
4632opeq1d 4408 . . . . . . 7  |-  ( ph  -> 
<. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  / 
2 ) >.  =  <. A ,  ( ( A  +  B )  / 
2 ) >. )
4734oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  ( 2nd `  <. A ,  B >. ) )  =  ( ( ( A  +  B )  / 
2 )  +  B
) )
4847oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
4948, 34opeq12d 4410 . . . . . . 7  |-  ( ph  -> 
<. ( ( ( ( A  +  B )  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >.  =  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. )
5046, 49ifeq12d 4106 . . . . . 6  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  ( 2nd `  <. A ,  B >. )
)  /  2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2
)  <  M ,  <. A ,  ( ( A  +  B )  /  2 ) >. ,  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. ) )
5145, 50syl5eq 2668 . . . . 5  |-  ( ph  ->  [_ ( ( A  +  B )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
5237, 51eqtrd 2656 . . . 4  |-  ( ph  ->  [_ ( ( ( 1st `  <. A ,  B >. )  +  ( 2nd `  <. A ,  B >. ) )  / 
2 )  /  m ]_ if ( m  < 
M ,  <. ( 1st `  <. A ,  B >. ) ,  m >. , 
<. ( ( m  +  ( 2nd `  <. A ,  B >. ) )  / 
2 ) ,  ( 2nd `  <. A ,  B >. ) >. )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
5330, 52eqtrd 2656 . . 3  |-  ( ph  ->  ( <. A ,  B >. D M )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
543, 4readdcld 10069 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  RR )
5554rehalfcld 11279 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  RR )
56 opelxpi 5148 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  RR )  ->  <. A ,  ( ( A  +  B
)  /  2 )
>.  e.  ( RR  X.  RR ) )
573, 55, 56syl2anc 693 . . . 4  |-  ( ph  -> 
<. A ,  ( ( A  +  B )  /  2 ) >.  e.  ( RR  X.  RR ) )
5855, 4readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  B
)  e.  RR )
5958rehalfcld 11279 . . . . 5  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )
60 opelxpi 5148 . . . . 5  |-  ( ( ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR  /\  B  e.  RR )  -> 
<. ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ,  B >.  e.  ( RR  X.  RR ) )
6159, 4, 60syl2anc 693 . . . 4  |-  ( ph  -> 
<. ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ,  B >.  e.  ( RR  X.  RR ) )
6257, 61ifcld 4131 . . 3  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  e.  ( RR  X.  RR ) )
6353, 62eqeltrd 2701 . 2  |-  ( ph  ->  ( <. A ,  B >. D M )  e.  ( RR  X.  RR ) )
64 ruclem1.6 . . 3  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
6553fveq2d 6195 . . . 4  |-  ( ph  ->  ( 1st `  ( <. A ,  B >. D M ) )  =  ( 1st `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) ) )
66 fvif 6204 . . . . 5  |-  ( 1st `  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( 1st `  <. A ,  ( ( A  +  B )  / 
2 ) >. ) ,  ( 1st `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
67 op1stg 7180 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  _V )  ->  ( 1st `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  A )
683, 38, 67sylancl 694 . . . . . 6  |-  ( ph  ->  ( 1st `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  A )
69 ovex 6678 . . . . . . 7  |-  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 )  e. 
_V
70 op1stg 7180 . . . . . . 7  |-  ( ( ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  _V  /\  B  e.  RR )  ->  ( 1st `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
7169, 4, 70sylancr 695 . . . . . 6  |-  ( ph  ->  ( 1st `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
7268, 71ifeq12d 4106 . . . . 5  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( 1st `  <. A ,  ( ( A  +  B
)  /  2 )
>. ) ,  ( 1st `  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
7366, 72syl5eq 2668 . . . 4  |-  ( ph  ->  ( 1st `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ) )
7465, 73eqtrd 2656 . . 3  |-  ( ph  ->  ( 1st `  ( <. A ,  B >. D M ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ) )
7564, 74syl5eq 2668 . 2  |-  ( ph  ->  X  =  if ( ( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
76 ruclem1.7 . . 3  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
7753fveq2d 6195 . . . 4  |-  ( ph  ->  ( 2nd `  ( <. A ,  B >. D M ) )  =  ( 2nd `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) ) )
78 fvif 6204 . . . . 5  |-  ( 2nd `  if ( ( ( A  +  B )  /  2 )  < 
M ,  <. A , 
( ( A  +  B )  /  2
) >. ,  <. (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( 2nd `  <. A ,  ( ( A  +  B )  / 
2 ) >. ) ,  ( 2nd `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )
)
79 op2ndg 7181 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  _V )  ->  ( 2nd `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  ( ( A  +  B )  / 
2 ) )
803, 38, 79sylancl 694 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. A ,  ( ( A  +  B )  / 
2 ) >. )  =  ( ( A  +  B )  / 
2 ) )
81 op2ndg 7181 . . . . . . 7  |-  ( ( ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  _V  /\  B  e.  RR )  ->  ( 2nd `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  B )
8269, 4, 81sylancr 695 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ,  B >. )  =  B )
8380, 82ifeq12d 4106 . . . . 5  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( 2nd `  <. A ,  ( ( A  +  B
)  /  2 )
>. ) ,  ( 2nd `  <. ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
) )
8478, 83syl5eq 2668 . . . 4  |-  ( ph  ->  ( 2nd `  if ( ( ( A  +  B )  / 
2 )  <  M ,  <. A ,  ( ( A  +  B
)  /  2 )
>. ,  <. ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) ,  B >. ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) )
8577, 84eqtrd 2656 . . 3  |-  ( ph  ->  ( 2nd `  ( <. A ,  B >. D M ) )  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) )
8676, 85syl5eq 2668 . 2  |-  ( ph  ->  Y  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( ( A  +  B )  /  2
) ,  B ) )
8763, 75, 863jca 1242 1  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   ifcif 4086   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935    + caddc 9939    < clt 10074    / cdiv 10684   NNcn 11020   2c2 11070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079
This theorem is referenced by:  ruclem2  14961  ruclem3  14962  ruclem6  14964
  Copyright terms: Public domain W3C validator