MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem2 Structured version   Visualization version   Unicode version

Theorem ruclem2 14961
Description: Lemma for ruc 14972. Ordering property for the input to 
D. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruclem1.3  |-  ( ph  ->  A  e.  RR )
ruclem1.4  |-  ( ph  ->  B  e.  RR )
ruclem1.5  |-  ( ph  ->  M  e.  RR )
ruclem1.6  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
ruclem1.7  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
ruclem2.8  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ruclem2  |-  ( ph  ->  ( A  <_  X  /\  X  <  Y  /\  Y  <_  B ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    m, F, x, y    m, M, x, y
Allowed substitution hints:    ph( x, y, m)    D( x, y, m)    X( x, y, m)    Y( x, y, m)

Proof of Theorem ruclem2
StepHypRef Expression
1 ruclem1.3 . . . . 5  |-  ( ph  ->  A  e.  RR )
21leidd 10594 . . . 4  |-  ( ph  ->  A  <_  A )
3 ruclem1.4 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
41, 3readdcld 10069 . . . . . . . 8  |-  ( ph  ->  ( A  +  B
)  e.  RR )
54rehalfcld 11279 . . . . . . 7  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  RR )
65, 3readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  B
)  e.  RR )
76rehalfcld 11279 . . . . 5  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )
8 ruclem2.8 . . . . . . 7  |-  ( ph  ->  A  <  B )
9 avglt1 11270 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A  <  ( ( A  +  B )  / 
2 ) ) )
101, 3, 9syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( A  <  B  <->  A  <  ( ( A  +  B )  / 
2 ) ) )
118, 10mpbid 222 . . . . . 6  |-  ( ph  ->  A  <  ( ( A  +  B )  /  2 ) )
12 avglt2 11271 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
131, 3, 12syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
148, 13mpbid 222 . . . . . . 7  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <  B )
15 avglt1 11270 . . . . . . . 8  |-  ( ( ( ( A  +  B )  /  2
)  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
165, 3, 15syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
1714, 16mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )
181, 5, 7, 11, 17lttrd 10198 . . . . 5  |-  ( ph  ->  A  <  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) )
191, 7, 18ltled 10185 . . . 4  |-  ( ph  ->  A  <_  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )
20 breq2 4657 . . . . 5  |-  ( A  =  if ( ( ( A  +  B
)  /  2 )  <  M ,  A ,  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )  -> 
( A  <_  A  <->  A  <_  if ( ( ( A  +  B
)  /  2 )  <  M ,  A ,  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) ) )
21 breq2 4657 . . . . 5  |-  ( ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 )  =  if ( ( ( A  +  B
)  /  2 )  <  M ,  A ,  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )  -> 
( A  <_  (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 )  <-> 
A  <_  if (
( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) ) )
2220, 21ifboth 4124 . . . 4  |-  ( ( A  <_  A  /\  A  <_  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )  ->  A  <_  if ( ( ( A  +  B
)  /  2 )  <  M ,  A ,  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
232, 19, 22syl2anc 693 . . 3  |-  ( ph  ->  A  <_  if (
( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
24 ruc.1 . . . . 5  |-  ( ph  ->  F : NN --> RR )
25 ruc.2 . . . . 5  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
26 ruclem1.5 . . . . 5  |-  ( ph  ->  M  e.  RR )
27 ruclem1.6 . . . . 5  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
28 ruclem1.7 . . . . 5  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
2924, 25, 1, 3, 26, 27, 28ruclem1 14960 . . . 4  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
3029simp2d 1074 . . 3  |-  ( ph  ->  X  =  if ( ( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
3123, 30breqtrrd 4681 . 2  |-  ( ph  ->  A  <_  X )
32 iftrue 4092 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) )  =  A )
33 iftrue 4092 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  =  ( ( A  +  B )  /  2 ) )
3432, 33breq12d 4666 . . . . 5  |-  ( ( ( A  +  B
)  /  2 )  <  M  ->  ( if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) )  <  if ( ( ( A  +  B
)  /  2 )  <  M ,  ( ( A  +  B
)  /  2 ) ,  B )  <->  A  <  ( ( A  +  B
)  /  2 ) ) )
3511, 34syl5ibrcom 237 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  M  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  <  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
) ) )
36 avglt2 11271 . . . . . . 7  |-  ( ( ( ( A  +  B )  /  2
)  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 )  <  B ) )
375, 3, 36syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 )  <  B ) )
3814, 37mpbid 222 . . . . 5  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  <  B )
39 iffalse 4095 . . . . . 6  |-  ( -.  ( ( A  +  B )  /  2
)  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
40 iffalse 4095 . . . . . 6  |-  ( -.  ( ( A  +  B )  /  2
)  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  =  B )
4139, 40breq12d 4666 . . . . 5  |-  ( -.  ( ( A  +  B )  /  2
)  <  M  ->  ( if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  <  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  <->  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 )  <  B
) )
4238, 41syl5ibrcom 237 . . . 4  |-  ( ph  ->  ( -.  ( ( A  +  B )  /  2 )  < 
M  ->  if (
( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )  <  if ( ( ( A  +  B
)  /  2 )  <  M ,  ( ( A  +  B
)  /  2 ) ,  B ) ) )
4335, 42pm2.61d 170 . . 3  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  <  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
) )
4429simp3d 1075 . . 3  |-  ( ph  ->  Y  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( ( A  +  B )  /  2
) ,  B ) )
4543, 30, 443brtr4d 4685 . 2  |-  ( ph  ->  X  <  Y )
465, 3, 14ltled 10185 . . . 4  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <_  B )
473leidd 10594 . . . 4  |-  ( ph  ->  B  <_  B )
48 breq1 4656 . . . . 5  |-  ( ( ( A  +  B
)  /  2 )  =  if ( ( ( A  +  B
)  /  2 )  <  M ,  ( ( A  +  B
)  /  2 ) ,  B )  -> 
( ( ( A  +  B )  / 
2 )  <_  B  <->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  <_  B )
)
49 breq1 4656 . . . . 5  |-  ( B  =  if ( ( ( A  +  B
)  /  2 )  <  M ,  ( ( A  +  B
)  /  2 ) ,  B )  -> 
( B  <_  B  <->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  <_  B )
)
5048, 49ifboth 4124 . . . 4  |-  ( ( ( ( A  +  B )  /  2
)  <_  B  /\  B  <_  B )  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  <_  B )
5146, 47, 50syl2anc 693 . . 3  |-  ( ph  ->  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B )  <_  B
)
5244, 51eqbrtrd 4675 . 2  |-  ( ph  ->  Y  <_  B )
5331, 45, 523jca 1242 1  |-  ( ph  ->  ( A  <_  X  /\  X  <  Y  /\  Y  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   [_csb 3533   ifcif 4086   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079
This theorem is referenced by:  ruclem8  14966  ruclem9  14967
  Copyright terms: Public domain W3C validator