MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem3 Structured version   Visualization version   Unicode version

Theorem ruclem3 14962
Description: Lemma for ruc 14972. The constructed interval  [ X ,  Y ] always excludes  M. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruclem1.3  |-  ( ph  ->  A  e.  RR )
ruclem1.4  |-  ( ph  ->  B  e.  RR )
ruclem1.5  |-  ( ph  ->  M  e.  RR )
ruclem1.6  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
ruclem1.7  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
ruclem2.8  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ruclem3  |-  ( ph  ->  ( M  <  X  \/  Y  <  M ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    m, F, x, y    m, M, x, y
Allowed substitution hints:    ph( x, y, m)    D( x, y, m)    X( x, y, m)    Y( x, y, m)

Proof of Theorem ruclem3
StepHypRef Expression
1 ruclem1.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2 ruclem1.3 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 ruclem1.4 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
42, 3readdcld 10069 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  B
)  e.  RR )
54rehalfcld 11279 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  RR )
61, 5lenltd 10183 . . . . . . . 8  |-  ( ph  ->  ( M  <_  (
( A  +  B
)  /  2 )  <->  -.  ( ( A  +  B )  /  2
)  <  M )
)
7 ruclem2.8 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
8 avglt2 11271 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
92, 3, 8syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
107, 9mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <  B )
11 avglt1 11270 . . . . . . . . . . 11  |-  ( ( ( ( A  +  B )  /  2
)  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
125, 3, 11syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
1310, 12mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )
145, 3readdcld 10069 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  B
)  e.  RR )
1514rehalfcld 11279 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )
16 lelttr 10128 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  RR  /\  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )  ->  ( ( M  <_  ( ( A  +  B )  / 
2 )  /\  (
( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )  ->  M  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
171, 5, 15, 16syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( ( M  <_ 
( ( A  +  B )  /  2
)  /\  ( ( A  +  B )  /  2 )  < 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  ->  M  <  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ) )
1813, 17mpan2d 710 . . . . . . . 8  |-  ( ph  ->  ( M  <_  (
( A  +  B
)  /  2 )  ->  M  <  (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ) )
196, 18sylbird 250 . . . . . . 7  |-  ( ph  ->  ( -.  ( ( A  +  B )  /  2 )  < 
M  ->  M  <  ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ) )
2019imp 445 . . . . . 6  |-  ( (
ph  /\  -.  (
( A  +  B
)  /  2 )  <  M )  ->  M  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
21 ruc.1 . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
22 ruc.2 . . . . . . . . 9  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
23 ruclem1.6 . . . . . . . . 9  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
24 ruclem1.7 . . . . . . . . 9  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
2521, 22, 2, 3, 1, 23, 24ruclem1 14960 . . . . . . . 8  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
2625simp2d 1074 . . . . . . 7  |-  ( ph  ->  X  =  if ( ( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
27 iffalse 4095 . . . . . . 7  |-  ( -.  ( ( A  +  B )  /  2
)  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
2826, 27sylan9eq 2676 . . . . . 6  |-  ( (
ph  /\  -.  (
( A  +  B
)  /  2 )  <  M )  ->  X  =  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )
2920, 28breqtrrd 4681 . . . . 5  |-  ( (
ph  /\  -.  (
( A  +  B
)  /  2 )  <  M )  ->  M  <  X )
3029ex 450 . . . 4  |-  ( ph  ->  ( -.  ( ( A  +  B )  /  2 )  < 
M  ->  M  <  X ) )
3130con1d 139 . . 3  |-  ( ph  ->  ( -.  M  < 
X  ->  ( ( A  +  B )  /  2 )  < 
M ) )
3225simp3d 1075 . . . . . 6  |-  ( ph  ->  Y  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( ( A  +  B )  /  2
) ,  B ) )
33 iftrue 4092 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  =  ( ( A  +  B )  /  2 ) )
3432, 33sylan9eq 2676 . . . . 5  |-  ( (
ph  /\  ( ( A  +  B )  /  2 )  < 
M )  ->  Y  =  ( ( A  +  B )  / 
2 ) )
35 simpr 477 . . . . 5  |-  ( (
ph  /\  ( ( A  +  B )  /  2 )  < 
M )  ->  (
( A  +  B
)  /  2 )  <  M )
3634, 35eqbrtrd 4675 . . . 4  |-  ( (
ph  /\  ( ( A  +  B )  /  2 )  < 
M )  ->  Y  <  M )
3736ex 450 . . 3  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  M  ->  Y  <  M ) )
3831, 37syld 47 . 2  |-  ( ph  ->  ( -.  M  < 
X  ->  Y  <  M ) )
3938orrd 393 1  |-  ( ph  ->  ( M  <  X  \/  Y  <  M ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   [_csb 3533   ifcif 4086   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079
This theorem is referenced by:  ruclem12  14970
  Copyright terms: Public domain W3C validator