MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem12 Structured version   Visualization version   Unicode version

Theorem ruclem12 14970
Description: Lemma for ruc 14972. The supremum of the increasing sequence  1st  o.  G is a real number that is not in the range of  F. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
ruc.6  |-  S  =  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )
Assertion
Ref Expression
ruclem12  |-  ( ph  ->  S  e.  ( RR 
\  ran  F )
)
Distinct variable groups:    x, m, y, F    m, G, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)    S( x, y, m)

Proof of Theorem ruclem12
Dummy variables  z  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.6 . . 3  |-  S  =  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )
2 ruc.1 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
3 ruc.2 . . . . . 6  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
4 ruc.4 . . . . . 6  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
5 ruc.5 . . . . . 6  |-  G  =  seq 0 ( D ,  C )
62, 3, 4, 5ruclem11 14969 . . . . 5  |-  ( ph  ->  ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  A. z  e. 
ran  ( 1st  o.  G ) z  <_ 
1 ) )
76simp1d 1073 . . . 4  |-  ( ph  ->  ran  ( 1st  o.  G )  C_  RR )
86simp2d 1074 . . . 4  |-  ( ph  ->  ran  ( 1st  o.  G )  =/=  (/) )
9 1re 10039 . . . . 5  |-  1  e.  RR
106simp3d 1075 . . . . 5  |-  ( ph  ->  A. z  e.  ran  ( 1st  o.  G ) z  <_  1 )
11 breq2 4657 . . . . . . 7  |-  ( n  =  1  ->  (
z  <_  n  <->  z  <_  1 ) )
1211ralbidv 2986 . . . . . 6  |-  ( n  =  1  ->  ( A. z  e.  ran  ( 1st  o.  G ) z  <_  n  <->  A. z  e.  ran  ( 1st  o.  G ) z  <_ 
1 ) )
1312rspcev 3309 . . . . 5  |-  ( ( 1  e.  RR  /\  A. z  e.  ran  ( 1st  o.  G ) z  <_  1 )  ->  E. n  e.  RR  A. z  e.  ran  ( 1st  o.  G ) z  <_  n )
149, 10, 13sylancr 695 . . . 4  |-  ( ph  ->  E. n  e.  RR  A. z  e.  ran  ( 1st  o.  G ) z  <_  n )
15 suprcl 10983 . . . 4  |-  ( ( ran  ( 1st  o.  G )  C_  RR  /\ 
ran  ( 1st  o.  G )  =/=  (/)  /\  E. n  e.  RR  A. z  e.  ran  ( 1st  o.  G ) z  <_  n )  ->  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )  e.  RR )
167, 8, 14, 15syl3anc 1326 . . 3  |-  ( ph  ->  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )  e.  RR )
171, 16syl5eqel 2705 . 2  |-  ( ph  ->  S  e.  RR )
182adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> RR )
193adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
202, 3, 4, 5ruclem6 14964 . . . . . . . . . . 11  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
21 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
22 ffvelrn 6357 . . . . . . . . . . 11  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  ( n  -  1
)  e.  NN0 )  ->  ( G `  (
n  -  1 ) )  e.  ( RR 
X.  RR ) )
2320, 21, 22syl2an 494 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( n  - 
1 ) )  e.  ( RR  X.  RR ) )
24 xp1st 7198 . . . . . . . . . 10  |-  ( ( G `  ( n  -  1 ) )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  (
n  -  1 ) ) )  e.  RR )
2523, 24syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  (
n  -  1 ) ) )  e.  RR )
26 xp2nd 7199 . . . . . . . . . 10  |-  ( ( G `  ( n  -  1 ) )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  (
n  -  1 ) ) )  e.  RR )
2723, 26syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  (
n  -  1 ) ) )  e.  RR )
282ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  RR )
29 eqid 2622 . . . . . . . . 9  |-  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  =  ( 1st `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
30 eqid 2622 . . . . . . . . 9  |-  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  =  ( 2nd `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
312, 3, 4, 5ruclem8 14966 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  -  1 )  e. 
NN0 )  ->  ( 1st `  ( G `  ( n  -  1
) ) )  < 
( 2nd `  ( G `  ( n  -  1 ) ) ) )
3221, 31sylan2 491 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  (
n  -  1 ) ) )  <  ( 2nd `  ( G `  ( n  -  1
) ) ) )
3318, 19, 25, 27, 28, 29, 30, 32ruclem3 14962 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  \/  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1
) ) ) ,  ( 2nd `  ( G `  ( n  -  1 ) ) ) >. D ( F `
 n ) ) )  <  ( F `
 n ) ) )
342, 3, 4, 5ruclem7 14965 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  -  1 )  e. 
NN0 )  ->  ( G `  ( (
n  -  1 )  +  1 ) )  =  ( ( G `
 ( n  - 
1 ) ) D ( F `  (
( n  -  1 )  +  1 ) ) ) )
3521, 34sylan2 491 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( ( n  -  1 )  +  1 ) )  =  ( ( G `  ( n  -  1
) ) D ( F `  ( ( n  -  1 )  +  1 ) ) ) )
36 nncn 11028 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
3736adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
38 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
39 npcan 10290 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
4037, 38, 39sylancl 694 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( n  -  1 )  +  1 )  =  n )
4140fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( ( n  -  1 )  +  1 ) )  =  ( G `  n
) )
42 1st2nd2 7205 . . . . . . . . . . . . . 14  |-  ( ( G `  ( n  -  1 ) )  e.  ( RR  X.  RR )  ->  ( G `
 ( n  - 
1 ) )  = 
<. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. )
4323, 42syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( n  - 
1 ) )  = 
<. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. )
4440fveq2d 6195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 ( ( n  -  1 )  +  1 ) )  =  ( F `  n
) )
4543, 44oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( G `  ( n  -  1 ) ) D ( F `  ( ( n  - 
1 )  +  1 ) ) )  =  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
4635, 41, 453eqtr3d 2664 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  =  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
4746fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  ( 1st `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) ) )
4847breq2d 4665 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( G `  n )
)  <->  ( F `  n )  <  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1
) ) ) ,  ( 2nd `  ( G `  ( n  -  1 ) ) ) >. D ( F `
 n ) ) ) ) )
4946fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  ( 2nd `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) ) )
5049breq1d 4663 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  <  ( F `  n )  <->  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  <  ( F `  n )
) )
5148, 50orbi12d 746 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( F `  n
)  <  ( 1st `  ( G `  n
) )  \/  ( 2nd `  ( G `  n ) )  < 
( F `  n
) )  <->  ( ( F `  n )  <  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  \/  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1
) ) ) ,  ( 2nd `  ( G `  ( n  -  1 ) ) ) >. D ( F `
 n ) ) )  <  ( F `
 n ) ) ) )
5233, 51mpbird 247 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( G `  n )
)  \/  ( 2nd `  ( G `  n
) )  <  ( F `  n )
) )
537adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ran  ( 1st  o.  G )  C_  RR )
548adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ran  ( 1st  o.  G )  =/=  (/) )
5514adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  E. n  e.  RR  A. z  e. 
ran  ( 1st  o.  G ) z  <_  n )
56 nnnn0 11299 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  NN0 )
57 fvco3 6275 . . . . . . . . . . . . 13  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  n  e.  NN0 )  -> 
( ( 1st  o.  G ) `  n
)  =  ( 1st `  ( G `  n
) ) )
5820, 56, 57syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st  o.  G ) `
 n )  =  ( 1st `  ( G `  n )
) )
5920adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  G : NN0
--> ( RR  X.  RR ) )
60 1stcof 7196 . . . . . . . . . . . . . 14  |-  ( G : NN0 --> ( RR 
X.  RR )  -> 
( 1st  o.  G
) : NN0 --> RR )
61 ffn 6045 . . . . . . . . . . . . . 14  |-  ( ( 1st  o.  G ) : NN0 --> RR  ->  ( 1st  o.  G )  Fn  NN0 )
6259, 60, 613syl 18 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st 
o.  G )  Fn 
NN0 )
6356adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
64 fnfvelrn 6356 . . . . . . . . . . . . 13  |-  ( ( ( 1st  o.  G
)  Fn  NN0  /\  n  e.  NN0 )  -> 
( ( 1st  o.  G ) `  n
)  e.  ran  ( 1st  o.  G ) )
6562, 63, 64syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st  o.  G ) `
 n )  e. 
ran  ( 1st  o.  G ) )
6658, 65eqeltrrd 2702 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  e.  ran  ( 1st  o.  G ) )
67 suprub 10984 . . . . . . . . . . 11  |-  ( ( ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  E. n  e.  RR  A. z  e. 
ran  ( 1st  o.  G ) z  <_  n )  /\  ( 1st `  ( G `  n ) )  e. 
ran  ( 1st  o.  G ) )  -> 
( 1st `  ( G `  n )
)  <_  sup ( ran  ( 1st  o.  G
) ,  RR ,  <  ) )
6853, 54, 55, 66, 67syl31anc 1329 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  <_  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  ) )
6968, 1syl6breqr 4695 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  <_  S
)
70 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  n  e.  NN0 )  -> 
( G `  n
)  e.  ( RR 
X.  RR ) )
7120, 56, 70syl2an 494 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  ( RR  X.  RR ) )
72 xp1st 7198 . . . . . . . . . . 11  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  n
) )  e.  RR )
7371, 72syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  e.  RR )
7417adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  S  e.  RR )
75 ltletr 10129 . . . . . . . . . 10  |-  ( ( ( F `  n
)  e.  RR  /\  ( 1st `  ( G `
 n ) )  e.  RR  /\  S  e.  RR )  ->  (
( ( F `  n )  <  ( 1st `  ( G `  n ) )  /\  ( 1st `  ( G `
 n ) )  <_  S )  -> 
( F `  n
)  <  S )
)
7628, 73, 74, 75syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( F `  n
)  <  ( 1st `  ( G `  n
) )  /\  ( 1st `  ( G `  n ) )  <_  S )  ->  ( F `  n )  <  S ) )
7769, 76mpan2d 710 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( G `  n )
)  ->  ( F `  n )  <  S
) )
78 fvco3 6275 . . . . . . . . . . . . . . 15  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  k  e.  NN0 )  -> 
( ( 1st  o.  G ) `  k
)  =  ( 1st `  ( G `  k
) ) )
7959, 78sylan 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  (
( 1st  o.  G
) `  k )  =  ( 1st `  ( G `  k )
) )
8059ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  ( RR  X.  RR ) )
81 xp1st 7198 . . . . . . . . . . . . . . . 16  |-  ( ( G `  k )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  k
) )  e.  RR )
8280, 81syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 1st `  ( G `  k ) )  e.  RR )
83 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
8471, 83syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
8584adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 2nd `  ( G `  n ) )  e.  RR )
8618adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  F : NN --> RR )
8719adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
88 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
8963adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  n  e.  NN0 )
9086, 87, 4, 5, 88, 89ruclem10 14968 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 1st `  ( G `  k ) )  < 
( 2nd `  ( G `  n )
) )
9182, 85, 90ltled 10185 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 1st `  ( G `  k ) )  <_ 
( 2nd `  ( G `  n )
) )
9279, 91eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  (
( 1st  o.  G
) `  k )  <_  ( 2nd `  ( G `  n )
) )
9392ralrimiva 2966 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN0  ( ( 1st 
o.  G ) `  k )  <_  ( 2nd `  ( G `  n ) ) )
94 breq1 4656 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( 1st 
o.  G ) `  k )  ->  (
z  <_  ( 2nd `  ( G `  n
) )  <->  ( ( 1st  o.  G ) `  k )  <_  ( 2nd `  ( G `  n ) ) ) )
9594ralrn 6362 . . . . . . . . . . . . 13  |-  ( ( 1st  o.  G )  Fn  NN0  ->  ( A. z  e.  ran  ( 1st 
o.  G ) z  <_  ( 2nd `  ( G `  n )
)  <->  A. k  e.  NN0  ( ( 1st  o.  G ) `  k
)  <_  ( 2nd `  ( G `  n
) ) ) )
9662, 95syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. z  e.  ran  ( 1st 
o.  G ) z  <_  ( 2nd `  ( G `  n )
)  <->  A. k  e.  NN0  ( ( 1st  o.  G ) `  k
)  <_  ( 2nd `  ( G `  n
) ) ) )
9793, 96mpbird 247 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  A. z  e.  ran  ( 1st  o.  G ) z  <_ 
( 2nd `  ( G `  n )
) )
98 suprleub 10989 . . . . . . . . . . . 12  |-  ( ( ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  E. n  e.  RR  A. z  e. 
ran  ( 1st  o.  G ) z  <_  n )  /\  ( 2nd `  ( G `  n ) )  e.  RR )  ->  ( sup ( ran  ( 1st 
o.  G ) ,  RR ,  <  )  <_  ( 2nd `  ( G `  n )
)  <->  A. z  e.  ran  ( 1st  o.  G ) z  <_  ( 2nd `  ( G `  n
) ) ) )
9953, 54, 55, 84, 98syl31anc 1329 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( sup ( ran  ( 1st 
o.  G ) ,  RR ,  <  )  <_  ( 2nd `  ( G `  n )
)  <->  A. z  e.  ran  ( 1st  o.  G ) z  <_  ( 2nd `  ( G `  n
) ) ) )
10097, 99mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( ran  ( 1st  o.  G
) ,  RR ,  <  )  <_  ( 2nd `  ( G `  n
) ) )
1011, 100syl5eqbr 4688 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  S  <_ 
( 2nd `  ( G `  n )
) )
102 lelttr 10128 . . . . . . . . . 10  |-  ( ( S  e.  RR  /\  ( 2nd `  ( G `
 n ) )  e.  RR  /\  ( F `  n )  e.  RR )  ->  (
( S  <_  ( 2nd `  ( G `  n ) )  /\  ( 2nd `  ( G `
 n ) )  <  ( F `  n ) )  ->  S  <  ( F `  n ) ) )
10374, 84, 28, 102syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( S  <_  ( 2nd `  ( G `  n
) )  /\  ( 2nd `  ( G `  n ) )  < 
( F `  n
) )  ->  S  <  ( F `  n
) ) )
104101, 103mpand 711 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  <  ( F `  n )  ->  S  <  ( F `  n
) ) )
10577, 104orim12d 883 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( F `  n
)  <  ( 1st `  ( G `  n
) )  \/  ( 2nd `  ( G `  n ) )  < 
( F `  n
) )  ->  (
( F `  n
)  <  S  \/  S  <  ( F `  n ) ) ) )
10652, 105mpd 15 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  S  \/  S  <  ( F `  n
) ) )
10728, 74lttri2d 10176 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  =/=  S  <->  ( ( F `  n )  <  S  \/  S  < 
( F `  n
) ) ) )
108106, 107mpbird 247 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =/= 
S )
109108neneqd 2799 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  -.  ( F `  n )  =  S )
110109nrexdv 3001 . . 3  |-  ( ph  ->  -.  E. n  e.  NN  ( F `  n )  =  S )
111 risset 3062 . . . 4  |-  ( S  e.  ran  F  <->  E. z  e.  ran  F  z  =  S )
112 ffn 6045 . . . . 5  |-  ( F : NN --> RR  ->  F  Fn  NN )
113 eqeq1 2626 . . . . . 6  |-  ( z  =  ( F `  n )  ->  (
z  =  S  <->  ( F `  n )  =  S ) )
114113rexrn 6361 . . . . 5  |-  ( F  Fn  NN  ->  ( E. z  e.  ran  F  z  =  S  <->  E. n  e.  NN  ( F `  n )  =  S ) )
1152, 112, 1143syl 18 . . . 4  |-  ( ph  ->  ( E. z  e. 
ran  F  z  =  S 
<->  E. n  e.  NN  ( F `  n )  =  S ) )
116111, 115syl5bb 272 . . 3  |-  ( ph  ->  ( S  e.  ran  F  <->  E. n  e.  NN  ( F `  n )  =  S ) )
117110, 116mtbird 315 . 2  |-  ( ph  ->  -.  S  e.  ran  F )
11817, 117eldifd 3585 1  |-  ( ph  ->  S  e.  ( RR 
\  ran  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   [_csb 3533    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  ruclem13  14971
  Copyright terms: Public domain W3C validator