| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqomlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for seq𝜔. The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| seqomlem.a |
|
| Ref | Expression |
|---|---|
| seqomlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . 3
| |
| 2 | id 22 |
. . . 4
| |
| 3 | 1 | fveq2d 6195 |
. . . 4
|
| 4 | 2, 3 | opeq12d 4410 |
. . 3
|
| 5 | 1, 4 | eqeq12d 2637 |
. 2
|
| 6 | fveq2 6191 |
. . 3
| |
| 7 | id 22 |
. . . 4
| |
| 8 | 6 | fveq2d 6195 |
. . . 4
|
| 9 | 7, 8 | opeq12d 4410 |
. . 3
|
| 10 | 6, 9 | eqeq12d 2637 |
. 2
|
| 11 | fveq2 6191 |
. . 3
| |
| 12 | id 22 |
. . . 4
| |
| 13 | 11 | fveq2d 6195 |
. . . 4
|
| 14 | 12, 13 | opeq12d 4410 |
. . 3
|
| 15 | 11, 14 | eqeq12d 2637 |
. 2
|
| 16 | fveq2 6191 |
. . 3
| |
| 17 | id 22 |
. . . 4
| |
| 18 | 16 | fveq2d 6195 |
. . . 4
|
| 19 | 17, 18 | opeq12d 4410 |
. . 3
|
| 20 | 16, 19 | eqeq12d 2637 |
. 2
|
| 21 | seqomlem.a |
. . . . 5
| |
| 22 | 21 | fveq1i 6192 |
. . . 4
|
| 23 | opex 4932 |
. . . . 5
| |
| 24 | 23 | rdg0 7517 |
. . . 4
|
| 25 | 22, 24 | eqtri 2644 |
. . 3
|
| 26 | 0ex 4790 |
. . . . . . 7
| |
| 27 | fvex 6201 |
. . . . . . 7
| |
| 28 | 26, 27 | op2nd 7177 |
. . . . . 6
|
| 29 | 28 | eqcomi 2631 |
. . . . 5
|
| 30 | 29 | opeq2i 4406 |
. . . 4
|
| 31 | id 22 |
. . . 4
| |
| 32 | fveq2 6191 |
. . . . 5
| |
| 33 | 32 | opeq2d 4409 |
. . . 4
|
| 34 | 30, 31, 33 | 3eqtr4a 2682 |
. . 3
|
| 35 | 25, 34 | ax-mp 5 |
. 2
|
| 36 | df-ov 6653 |
. . . . . 6
| |
| 37 | fvex 6201 |
. . . . . . 7
| |
| 38 | suceq 5790 |
. . . . . . . . 9
| |
| 39 | oveq1 6657 |
. . . . . . . . 9
| |
| 40 | 38, 39 | opeq12d 4410 |
. . . . . . . 8
|
| 41 | oveq2 6658 |
. . . . . . . . 9
| |
| 42 | 41 | opeq2d 4409 |
. . . . . . . 8
|
| 43 | eqid 2622 |
. . . . . . . 8
| |
| 44 | opex 4932 |
. . . . . . . 8
| |
| 45 | 40, 42, 43, 44 | ovmpt2 6796 |
. . . . . . 7
|
| 46 | 37, 45 | mpan2 707 |
. . . . . 6
|
| 47 | 36, 46 | syl5eqr 2670 |
. . . . 5
|
| 48 | fveq2 6191 |
. . . . . 6
| |
| 49 | 48 | eqeq1d 2624 |
. . . . 5
|
| 50 | 47, 49 | syl5ibrcom 237 |
. . . 4
|
| 51 | vex 3203 |
. . . . . . . . . 10
| |
| 52 | 51 | sucex 7011 |
. . . . . . . . 9
|
| 53 | ovex 6678 |
. . . . . . . . 9
| |
| 54 | 52, 53 | op2nd 7177 |
. . . . . . . 8
|
| 55 | 54 | eqcomi 2631 |
. . . . . . 7
|
| 56 | 55 | a1i 11 |
. . . . . 6
|
| 57 | 56 | opeq2d 4409 |
. . . . 5
|
| 58 | id 22 |
. . . . . 6
| |
| 59 | fveq2 6191 |
. . . . . . 7
| |
| 60 | 59 | opeq2d 4409 |
. . . . . 6
|
| 61 | 58, 60 | eqeq12d 2637 |
. . . . 5
|
| 62 | 57, 61 | syl5ibrcom 237 |
. . . 4
|
| 63 | 50, 62 | syld 47 |
. . 3
|
| 64 | frsuc 7532 |
. . . . 5
| |
| 65 | peano2 7086 |
. . . . . . 7
| |
| 66 | fvres 6207 |
. . . . . . 7
| |
| 67 | 65, 66 | syl 17 |
. . . . . 6
|
| 68 | 21 | fveq1i 6192 |
. . . . . 6
|
| 69 | 67, 68 | syl6eqr 2674 |
. . . . 5
|
| 70 | fvres 6207 |
. . . . . . 7
| |
| 71 | 21 | fveq1i 6192 |
. . . . . . 7
|
| 72 | 70, 71 | syl6eqr 2674 |
. . . . . 6
|
| 73 | 72 | fveq2d 6195 |
. . . . 5
|
| 74 | 64, 69, 73 | 3eqtr3d 2664 |
. . . 4
|
| 75 | 74 | fveq2d 6195 |
. . . . 5
|
| 76 | 75 | opeq2d 4409 |
. . . 4
|
| 77 | 74, 76 | eqeq12d 2637 |
. . 3
|
| 78 | 63, 77 | sylibrd 249 |
. 2
|
| 79 | 5, 10, 15, 20, 35, 78 | finds 7092 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
| This theorem is referenced by: seqomlem2 7546 seqomlem4 7548 |
| Copyright terms: Public domain | W3C validator |