Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Visualization version   Unicode version

Theorem sigardiv 41050
Description: If signed area between vectors  B  -  A and  C  -  A is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sigardiv.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sigardiv.b  |-  ( ph  ->  -.  C  =  A )
sigardiv.c  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  0 )
Assertion
Ref Expression
sigardiv  |-  ( ph  ->  ( ( B  -  A )  /  ( C  -  A )
)  e.  RR )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp2d 1074 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
31simp1d 1073 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
42, 3subcld 10392 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
51simp3d 1075 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
65, 3subcld 10392 . . . . . 6  |-  ( ph  ->  ( C  -  A
)  e.  CC )
7 sigardiv.b . . . . . . . 8  |-  ( ph  ->  -.  C  =  A )
87neqned 2801 . . . . . . 7  |-  ( ph  ->  C  =/=  A )
95, 3, 8subne0d 10401 . . . . . 6  |-  ( ph  ->  ( C  -  A
)  =/=  0 )
104, 6, 9cjdivd 13963 . . . . 5  |-  ( ph  ->  ( * `  (
( B  -  A
)  /  ( C  -  A ) ) )  =  ( ( * `  ( B  -  A ) )  /  ( * `  ( C  -  A
) ) ) )
114cjcld 13936 . . . . . . 7  |-  ( ph  ->  ( * `  ( B  -  A )
)  e.  CC )
126cjcld 13936 . . . . . . 7  |-  ( ph  ->  ( * `  ( C  -  A )
)  e.  CC )
136, 9cjne0d 13943 . . . . . . 7  |-  ( ph  ->  ( * `  ( C  -  A )
)  =/=  0 )
1411, 12, 6, 13, 9divcan5rd 10828 . . . . . 6  |-  ( ph  ->  ( ( ( * `
 ( B  -  A ) )  x.  ( C  -  A
) )  /  (
( * `  ( C  -  A )
)  x.  ( C  -  A ) ) )  =  ( ( * `  ( B  -  A ) )  /  ( * `  ( C  -  A
) ) ) )
1511, 6mulcld 10060 . . . . . . . 8  |-  ( ph  ->  ( ( * `  ( B  -  A
) )  x.  ( C  -  A )
)  e.  CC )
16 sigar . . . . . . . . . . 11  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1716sigarval 41039 . . . . . . . . . 10  |-  ( ( ( B  -  A
)  e.  CC  /\  ( C  -  A
)  e.  CC )  ->  ( ( B  -  A ) G ( C  -  A
) )  =  ( Im `  ( ( * `  ( B  -  A ) )  x.  ( C  -  A ) ) ) )
184, 6, 17syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  ( Im
`  ( ( * `
 ( B  -  A ) )  x.  ( C  -  A
) ) ) )
19 sigardiv.c . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  0 )
2018, 19eqtr3d 2658 . . . . . . . 8  |-  ( ph  ->  ( Im `  (
( * `  ( B  -  A )
)  x.  ( C  -  A ) ) )  =  0 )
2115, 20reim0bd 13940 . . . . . . 7  |-  ( ph  ->  ( ( * `  ( B  -  A
) )  x.  ( C  -  A )
)  e.  RR )
226, 12mulcomd 10061 . . . . . . . 8  |-  ( ph  ->  ( ( C  -  A )  x.  (
* `  ( C  -  A ) ) )  =  ( ( * `
 ( C  -  A ) )  x.  ( C  -  A
) ) )
236cjmulrcld 13946 . . . . . . . 8  |-  ( ph  ->  ( ( C  -  A )  x.  (
* `  ( C  -  A ) ) )  e.  RR )
2422, 23eqeltrrd 2702 . . . . . . 7  |-  ( ph  ->  ( ( * `  ( C  -  A
) )  x.  ( C  -  A )
)  e.  RR )
2512, 6, 13, 9mulne0d 10679 . . . . . . 7  |-  ( ph  ->  ( ( * `  ( C  -  A
) )  x.  ( C  -  A )
)  =/=  0 )
2621, 24, 25redivcld 10853 . . . . . 6  |-  ( ph  ->  ( ( ( * `
 ( B  -  A ) )  x.  ( C  -  A
) )  /  (
( * `  ( C  -  A )
)  x.  ( C  -  A ) ) )  e.  RR )
2714, 26eqeltrrd 2702 . . . . 5  |-  ( ph  ->  ( ( * `  ( B  -  A
) )  /  (
* `  ( C  -  A ) ) )  e.  RR )
2810, 27eqeltrd 2701 . . . 4  |-  ( ph  ->  ( * `  (
( B  -  A
)  /  ( C  -  A ) ) )  e.  RR )
2928cjred 13966 . . 3  |-  ( ph  ->  ( * `  (
* `  ( ( B  -  A )  /  ( C  -  A ) ) ) )  =  ( * `
 ( ( B  -  A )  / 
( C  -  A
) ) ) )
304, 6, 9divcld 10801 . . . 4  |-  ( ph  ->  ( ( B  -  A )  /  ( C  -  A )
)  e.  CC )
3130cjcjd 13939 . . 3  |-  ( ph  ->  ( * `  (
* `  ( ( B  -  A )  /  ( C  -  A ) ) ) )  =  ( ( B  -  A )  /  ( C  -  A ) ) )
3229, 31eqtr3d 2658 . 2  |-  ( ph  ->  ( * `  (
( B  -  A
)  /  ( C  -  A ) ) )  =  ( ( B  -  A )  /  ( C  -  A ) ) )
3332, 28eqeltrrd 2702 1  |-  ( ph  ->  ( ( B  -  A )  /  ( C  -  A )
)  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    - cmin 10266    / cdiv 10684   *ccj 13836   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  sigarcol  41053  sharhght  41054
  Copyright terms: Public domain W3C validator