| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendocnv | Structured version Visualization version Unicode version | ||
| Description: Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.) |
| Ref | Expression |
|---|---|
| tendosp.h |
|
| tendosp.t |
|
| tendosp.e |
|
| Ref | Expression |
|---|---|
| tendocnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . . 5
| |
| 2 | tendosp.h |
. . . . . 6
| |
| 3 | tendosp.t |
. . . . . 6
| |
| 4 | tendosp.e |
. . . . . 6
| |
| 5 | 2, 3, 4 | tendocl 36055 |
. . . . 5
|
| 6 | eqid 2622 |
. . . . . 6
| |
| 7 | 6, 2, 3 | ltrn1o 35410 |
. . . . 5
|
| 8 | 1, 5, 7 | syl2anc 693 |
. . . 4
|
| 9 | f1ococnv1 6165 |
. . . 4
| |
| 10 | 8, 9 | syl 17 |
. . 3
|
| 11 | 10 | coeq1d 5283 |
. 2
|
| 12 | simp2 1062 |
. . . . . . . 8
| |
| 13 | 6, 2, 4 | tendoid 36061 |
. . . . . . . 8
|
| 14 | 1, 12, 13 | syl2anc 693 |
. . . . . . 7
|
| 15 | 6, 2, 3 | ltrn1o 35410 |
. . . . . . . . . 10
|
| 16 | 15 | 3adant2 1080 |
. . . . . . . . 9
|
| 17 | f1ococnv2 6163 |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl 17 |
. . . . . . . 8
|
| 19 | 18 | fveq2d 6195 |
. . . . . . 7
|
| 20 | f1ococnv2 6163 |
. . . . . . . 8
| |
| 21 | 8, 20 | syl 17 |
. . . . . . 7
|
| 22 | 14, 19, 21 | 3eqtr4rd 2667 |
. . . . . 6
|
| 23 | simp3 1063 |
. . . . . . 7
| |
| 24 | 2, 3 | ltrncnv 35432 |
. . . . . . . 8
|
| 25 | 24 | 3adant2 1080 |
. . . . . . 7
|
| 26 | 2, 3, 4 | tendospdi1 36309 |
. . . . . . 7
|
| 27 | 1, 12, 23, 25, 26 | syl13anc 1328 |
. . . . . 6
|
| 28 | 22, 27 | eqtrd 2656 |
. . . . 5
|
| 29 | 28 | coeq2d 5284 |
. . . 4
|
| 30 | coass 5654 |
. . . 4
| |
| 31 | coass 5654 |
. . . 4
| |
| 32 | 29, 30, 31 | 3eqtr4g 2681 |
. . 3
|
| 33 | 10 | coeq1d 5283 |
. . 3
|
| 34 | 2, 3, 4 | tendocl 36055 |
. . . . . 6
|
| 35 | 25, 34 | syld3an3 1371 |
. . . . 5
|
| 36 | 6, 2, 3 | ltrn1o 35410 |
. . . . 5
|
| 37 | 1, 35, 36 | syl2anc 693 |
. . . 4
|
| 38 | f1of 6137 |
. . . 4
| |
| 39 | fcoi2 6079 |
. . . 4
| |
| 40 | 37, 38, 39 | 3syl 18 |
. . 3
|
| 41 | 32, 33, 40 | 3eqtrd 2660 |
. 2
|
| 42 | 2, 3 | ltrncnv 35432 |
. . . . 5
|
| 43 | 1, 5, 42 | syl2anc 693 |
. . . 4
|
| 44 | 6, 2, 3 | ltrn1o 35410 |
. . . 4
|
| 45 | 1, 43, 44 | syl2anc 693 |
. . 3
|
| 46 | f1of 6137 |
. . 3
| |
| 47 | fcoi2 6079 |
. . 3
| |
| 48 | 45, 46, 47 | 3syl 18 |
. 2
|
| 49 | 11, 41, 48 | 3eqtr3rd 2665 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 |
| This theorem is referenced by: tendospcanN 36312 dihjatcclem4 36710 |
| Copyright terms: Public domain | W3C validator |