MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem12 Structured version   Visualization version   Unicode version

Theorem tfrlem12 7485
Description: Lemma for transfinite recursion. Show  C is an acceptable function. (Contributed by NM, 15-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem12  |-  (recs ( F )  e.  _V  ->  C  e.  A )
Distinct variable groups:    x, f,
y, C    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem12
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . 6  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 7480 . . . . 5  |-  Ord  dom recs ( F )
32a1i 11 . . . 4  |-  (recs ( F )  e.  _V  ->  Ord  dom recs ( F
) )
4 dmexg 7097 . . . 4  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  _V )
5 elon2 5734 . . . 4  |-  ( dom recs
( F )  e.  On  <->  ( Ord  dom recs ( F )  /\  dom recs ( F )  e.  _V ) )
63, 4, 5sylanbrc 698 . . 3  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  On )
7 suceloni 7013 . . . 4  |-  ( dom recs
( F )  e.  On  ->  suc  dom recs ( F )  e.  On )
8 tfrlem.3 . . . . 5  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
91, 8tfrlem10 7483 . . . 4  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
101, 8tfrlem11 7484 . . . . . 6  |-  ( dom recs
( F )  e.  On  ->  ( z  e.  suc  dom recs ( F
)  ->  ( C `  z )  =  ( F `  ( C  |`  z ) ) ) )
1110ralrimiv 2965 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  A. z  e.  suc  dom recs ( F
) ( C `  z )  =  ( F `  ( C  |`  z ) ) )
12 fveq2 6191 . . . . . . 7  |-  ( z  =  y  ->  ( C `  z )  =  ( C `  y ) )
13 reseq2 5391 . . . . . . . 8  |-  ( z  =  y  ->  ( C  |`  z )  =  ( C  |`  y
) )
1413fveq2d 6195 . . . . . . 7  |-  ( z  =  y  ->  ( F `  ( C  |`  z ) )  =  ( F `  ( C  |`  y ) ) )
1512, 14eqeq12d 2637 . . . . . 6  |-  ( z  =  y  ->  (
( C `  z
)  =  ( F `
 ( C  |`  z ) )  <->  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
1615cbvralv 3171 . . . . 5  |-  ( A. z  e.  suc  dom recs ( F ) ( C `
 z )  =  ( F `  ( C  |`  z ) )  <->  A. y  e.  suc  dom recs
( F ) ( C `  y )  =  ( F `  ( C  |`  y ) ) )
1711, 16sylib 208 . . . 4  |-  ( dom recs
( F )  e.  On  ->  A. y  e.  suc  dom recs ( F
) ( C `  y )  =  ( F `  ( C  |`  y ) ) )
18 fneq2 5980 . . . . . 6  |-  ( x  =  suc  dom recs ( F )  ->  ( C  Fn  x  <->  C  Fn  suc  dom recs ( F ) ) )
19 raleq 3138 . . . . . 6  |-  ( x  =  suc  dom recs ( F )  ->  ( A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) )  <->  A. y  e.  suc  dom recs
( F ) ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
2018, 19anbi12d 747 . . . . 5  |-  ( x  =  suc  dom recs ( F )  ->  (
( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) )  <->  ( C  Fn  suc  dom recs ( F
)  /\  A. y  e.  suc  dom recs ( F
) ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
2120rspcev 3309 . . . 4  |-  ( ( suc  dom recs ( F
)  e.  On  /\  ( C  Fn  suc  dom recs
( F )  /\  A. y  e.  suc  dom recs ( F ) ( C `
 y )  =  ( F `  ( C  |`  y ) ) ) )  ->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
227, 9, 17, 21syl12anc 1324 . . 3  |-  ( dom recs
( F )  e.  On  ->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
236, 22syl 17 . 2  |-  (recs ( F )  e.  _V  ->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
24 snex 4908 . . . . 5  |-  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. }  e.  _V
25 unexg 6959 . . . . 5  |-  ( (recs ( F )  e. 
_V  /\  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. }  e.  _V )  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  e.  _V )
2624, 25mpan2 707 . . . 4  |-  (recs ( F )  e.  _V  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  e.  _V )
278, 26syl5eqel 2705 . . 3  |-  (recs ( F )  e.  _V  ->  C  e.  _V )
28 fneq1 5979 . . . . . 6  |-  ( f  =  C  ->  (
f  Fn  x  <->  C  Fn  x ) )
29 fveq1 6190 . . . . . . . 8  |-  ( f  =  C  ->  (
f `  y )  =  ( C `  y ) )
30 reseq1 5390 . . . . . . . . 9  |-  ( f  =  C  ->  (
f  |`  y )  =  ( C  |`  y
) )
3130fveq2d 6195 . . . . . . . 8  |-  ( f  =  C  ->  ( F `  ( f  |`  y ) )  =  ( F `  ( C  |`  y ) ) )
3229, 31eqeq12d 2637 . . . . . . 7  |-  ( f  =  C  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
3332ralbidv 2986 . . . . . 6  |-  ( f  =  C  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) )
3428, 33anbi12d 747 . . . . 5  |-  ( f  =  C  ->  (
( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <-> 
( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3534rexbidv 3052 . . . 4  |-  ( f  =  C  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3635, 1elab2g 3353 . . 3  |-  ( C  e.  _V  ->  ( C  e.  A  <->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3727, 36syl 17 . 2  |-  (recs ( F )  e.  _V  ->  ( C  e.  A  <->  E. x  e.  On  ( C  Fn  x  /\  A. y  e.  x  ( C `  y )  =  ( F `  ( C  |`  y ) ) ) ) )
3823, 37mpbird 247 1  |-  (recs ( F )  e.  _V  ->  C  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   Ord word 5722   Oncon0 5723   suc csuc 5725    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfrlem13  7486
  Copyright terms: Public domain W3C validator