MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Visualization version   Unicode version

Theorem tfrlem13 7486
Description: Lemma for transfinite recursion. If recs is a set function, then  C is acceptable, and thus a subset of recs, but 
dom  C is bigger than  dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem13  |-  -. recs ( F )  e.  _V
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 7480 . . 3  |-  Ord  dom recs ( F )
3 ordirr 5741 . . 3  |-  ( Ord 
dom recs ( F )  ->  -.  dom recs ( F )  e.  dom recs ( F
) )
42, 3ax-mp 5 . 2  |-  -.  dom recs ( F )  e.  dom recs ( F )
5 eqid 2622 . . . . 5  |-  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )
61, 5tfrlem12 7485 . . . 4  |-  (recs ( F )  e.  _V  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  e.  A )
7 elssuni 4467 . . . . 5  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  e.  A  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  C_  U. A
)
81recsfval 7477 . . . . 5  |- recs ( F )  =  U. A
97, 8syl6sseqr 3652 . . . 4  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  e.  A  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  C_ recs ( F ) )
10 dmss 5323 . . . 4  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  C_ recs ( F )  ->  dom  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  C_  dom recs ( F ) )
116, 9, 103syl 18 . . 3  |-  (recs ( F )  e.  _V  ->  dom  (recs ( F )  u.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  C_  dom recs ( F ) )
122a1i 11 . . . . . 6  |-  (recs ( F )  e.  _V  ->  Ord  dom recs ( F
) )
13 dmexg 7097 . . . . . 6  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  _V )
14 elon2 5734 . . . . . 6  |-  ( dom recs
( F )  e.  On  <->  ( Ord  dom recs ( F )  /\  dom recs ( F )  e.  _V ) )
1512, 13, 14sylanbrc 698 . . . . 5  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  On )
16 sucidg 5803 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
1715, 16syl 17 . . . 4  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
181, 5tfrlem10 7483 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
19 fndm 5990 . . . . 5  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  Fn 
suc  dom recs ( F )  ->  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F ) )
2015, 18, 193syl 18 . . . 4  |-  (recs ( F )  e.  _V  ->  dom  (recs ( F )  u.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F ) )
2117, 20eleqtrrd 2704 . . 3  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
2211, 21sseldd 3604 . 2  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  dom recs ( F
) )
234, 22mto 188 1  |-  -. recs ( F )  e.  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   dom cdm 5114    |` cres 5116   Ord word 5722   Oncon0 5723   suc csuc 5725    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfrlem14  7487  tfrlem15  7488  tfrlem16  7489  tfr2b  7492
  Copyright terms: Public domain W3C validator