MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem16 Structured version   Visualization version   Unicode version

Theorem tfrlem16 7489
Description: Lemma for finite recursion. Without assuming ax-rep 4771, we can show that the domain of the constructed function is a limit ordinal, and hence contains all the finite ordinals. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem16  |-  Lim  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem16
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 7480 . . 3  |-  Ord  dom recs ( F )
3 ordzsl 7045 . . 3  |-  ( Ord 
dom recs ( F )  <->  ( dom recs ( F )  =  (/)  \/ 
E. z  e.  On  dom recs ( F )  =  suc  z  \/  Lim  dom recs
( F ) ) )
42, 3mpbi 220 . 2  |-  ( dom recs
( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )
5 res0 5400 . . . . . . 7  |-  (recs ( F )  |`  (/) )  =  (/)
6 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
75, 6eqeltri 2697 . . . . . 6  |-  (recs ( F )  |`  (/) )  e. 
_V
8 0elon 5778 . . . . . . 7  |-  (/)  e.  On
91tfrlem15 7488 . . . . . . 7  |-  ( (/)  e.  On  ->  ( (/)  e.  dom recs ( F )  <->  (recs ( F )  |`  (/) )  e. 
_V ) )
108, 9ax-mp 5 . . . . . 6  |-  ( (/)  e.  dom recs ( F )  <-> 
(recs ( F )  |`  (/) )  e.  _V )
117, 10mpbir 221 . . . . 5  |-  (/)  e.  dom recs ( F )
1211n0ii 3922 . . . 4  |-  -.  dom recs ( F )  =  (/)
1312pm2.21i 116 . . 3  |-  ( dom recs
( F )  =  (/)  ->  Lim  dom recs ( F ) )
141tfrlem13 7486 . . . . 5  |-  -. recs ( F )  e.  _V
15 simpr 477 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  suc  z )
16 df-suc 5729 . . . . . . . . . 10  |-  suc  z  =  ( z  u. 
{ z } )
1715, 16syl6eq 2672 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  ->  dom recs ( F )  =  ( z  u.  {
z } ) )
1817reseq2d 5396 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  dom recs ( F ) )  =  (recs ( F )  |`  (
z  u.  { z } ) ) )
191tfrlem6 7478 . . . . . . . . 9  |-  Rel recs ( F )
20 resdm 5441 . . . . . . . . 9  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
2119, 20ax-mp 5 . . . . . . . 8  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
22 resundi 5410 . . . . . . . 8  |-  (recs ( F )  |`  (
z  u.  { z } ) )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )
2318, 21, 223eqtr3g 2679 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  =  ( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) ) )
24 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
2524sucid 5804 . . . . . . . . . 10  |-  z  e. 
suc  z
2625, 15syl5eleqr 2708 . . . . . . . . 9  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
z  e.  dom recs ( F ) )
271tfrlem9a 7482 . . . . . . . . 9  |-  ( z  e.  dom recs ( F
)  ->  (recs ( F )  |`  z
)  e.  _V )
2826, 27syl 17 . . . . . . . 8  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
(recs ( F )  |`  z )  e.  _V )
29 snex 4908 . . . . . . . . 9  |-  { <. z ,  (recs ( F ) `  z )
>. }  e.  _V
301tfrlem7 7479 . . . . . . . . . 10  |-  Fun recs ( F )
31 funressn 6426 . . . . . . . . . 10  |-  ( Fun recs
( F )  -> 
(recs ( F )  |`  { z } ) 
C_  { <. z ,  (recs ( F ) `
 z ) >. } )
3230, 31ax-mp 5 . . . . . . . . 9  |-  (recs ( F )  |`  { z } )  C_  { <. z ,  (recs ( F ) `  z )
>. }
3329, 32ssexi 4803 . . . . . . . 8  |-  (recs ( F )  |`  { z } )  e.  _V
34 unexg 6959 . . . . . . . 8  |-  ( ( (recs ( F )  |`  z )  e.  _V  /\  (recs ( F )  |`  { z } )  e.  _V )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3528, 33, 34sylancl 694 . . . . . . 7  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> 
( (recs ( F )  |`  z )  u.  (recs ( F )  |`  { z } ) )  e.  _V )
3623, 35eqeltrd 2701 . . . . . 6  |-  ( ( z  e.  On  /\  dom recs ( F )  =  suc  z )  -> recs ( F )  e.  _V )
3736rexlimiva 3028 . . . . 5  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  -> recs ( F )  e.  _V )
3814, 37mto 188 . . . 4  |-  -.  E. z  e.  On  dom recs ( F )  =  suc  z
3938pm2.21i 116 . . 3  |-  ( E. z  e.  On  dom recs ( F )  =  suc  z  ->  Lim  dom recs ( F ) )
40 id 22 . . 3  |-  ( Lim 
dom recs ( F )  ->  Lim  dom recs ( F ) )
4113, 39, 403jaoi 1391 . 2  |-  ( ( dom recs ( F )  =  (/)  \/  E. z  e.  On  dom recs ( F
)  =  suc  z  \/  Lim  dom recs ( F
) )  ->  Lim  dom recs
( F ) )
424, 41ax-mp 5 1  |-  Lim  dom recs ( F )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   Rel wrel 5119   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfr1a  7490
  Copyright terms: Public domain W3C validator