MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmieu Structured version   Visualization version   Unicode version

Theorem lmieu 25676
Description: Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p  |-  P  =  ( Base `  G
)
ismid.d  |-  .-  =  ( dist `  G )
ismid.i  |-  I  =  (Itv `  G )
ismid.g  |-  ( ph  ->  G  e. TarskiG )
ismid.1  |-  ( ph  ->  GDimTarskiG 2 )
lmieu.l  |-  L  =  (LineG `  G )
lmieu.1  |-  ( ph  ->  D  e.  ran  L
)
lmieu.a  |-  ( ph  ->  A  e.  P )
Assertion
Ref Expression
lmieu  |-  ( ph  ->  E! b  e.  P  ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
Distinct variable groups:    G, b    P, b    ph, b    A, b    D, b    L, b
Allowed substitution hints:    I( b)    .- ( b)

Proof of Theorem lmieu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lmieu.a . . . 4  |-  ( ph  ->  A  e.  P )
21adantr 481 . . 3  |-  ( (
ph  /\  A  e.  D )  ->  A  e.  P )
3 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  -.  A  =  b
)
4 eqidd 2623 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  =  ( A (midG `  G ) b ) )
5 ismid.p . . . . . . . . . . . . . . . 16  |-  P  =  ( Base `  G
)
6 ismid.d . . . . . . . . . . . . . . . 16  |-  .-  =  ( dist `  G )
7 ismid.i . . . . . . . . . . . . . . . 16  |-  I  =  (Itv `  G )
8 ismid.g . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e. TarskiG )
98ad4antr 768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  G  e. TarskiG )
10 ismid.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  GDimTarskiG 2 )
1110ad4antr 768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  GDimTarskiG 2 )
122ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  A  e.  P )
13 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
b  e.  P )
14 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (pInvG `  G )  =  (pInvG `  G )
155, 6, 7, 9, 11, 12, 13midcl 25669 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  e.  P )
165, 6, 7, 9, 11, 12, 13, 14, 15ismidb 25670 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( b  =  ( ( (pInvG `  G
) `  ( A
(midG `  G )
b ) ) `  A )  <->  ( A
(midG `  G )
b )  =  ( A (midG `  G
) b ) ) )
174, 16mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
b  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) b ) ) `  A ) )
1817adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
b  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) b ) ) `  A ) )
19 lmieu.l . . . . . . . . . . . . . . . 16  |-  L  =  (LineG `  G )
209adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  G  e. TarskiG )
21 lmieu.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  e.  ran  L
)
2221ad4antr 768 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  D  e.  ran  L )
2322adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  D  e.  ran  L )
2412adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  P )
2513adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
b  e.  P )
263neqned 2801 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  A  =/=  b )
2726adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  =/=  b )
285, 7, 19, 20, 24, 25, 27tgelrnln 25525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A L b )  e.  ran  L
)
29 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  D  =/=  ( A L b ) )
30 simp-4r 807 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  A  e.  D )
3130adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  D )
325, 7, 19, 20, 24, 25, 27tglinerflx1 25528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  ( A L b ) )
3331, 32elind 3798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  ( D  i^i  ( A L b ) ) )
34 simpllr 799 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A (midG `  G ) b )  e.  D )
355, 6, 7, 9, 11, 12, 13midbtwn 25671 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  e.  ( A I b ) )
365, 7, 19, 9, 12, 13, 15, 26, 35btwnlng1 25514 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  e.  ( A L b ) )
3736adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A (midG `  G ) b )  e.  ( A L b ) )
3834, 37elind 3798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A (midG `  G ) b )  e.  ( D  i^i  ( A L b ) ) )
395, 7, 19, 20, 23, 28, 29, 33, 38tglineineq 25538 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  =  ( A
(midG `  G )
b ) )
4039fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( (pInvG `  G
) `  A )  =  ( (pInvG `  G ) `  ( A (midG `  G )
b ) ) )
4140fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( ( (pInvG `  G ) `  A
) `  A )  =  ( ( (pInvG `  G ) `  ( A (midG `  G )
b ) ) `  A ) )
42 eqid 2622 . . . . . . . . . . . . . 14  |-  ( (pInvG `  G ) `  A
)  =  ( (pInvG `  G ) `  A
)
435, 6, 7, 19, 14, 20, 24, 42mircinv 25563 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( ( (pInvG `  G ) `  A
) `  A )  =  A )
4418, 41, 433eqtr2rd 2663 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  =  b )
453, 44mtand 691 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  -.  D  =/=  ( A L b ) )
468ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  G  e. TarskiG )
4721ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D  e.  ran  L )
48 nne 2798 . . . . . . . . . . . . . . 15  |-  ( -.  D  =/=  ( A L b )  <->  D  =  ( A L b ) )
4945, 48sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  D  =  ( A L b ) )
5049adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D  =  ( A L b ) )
5150, 47eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  ( A L b )  e. 
ran  L )
52 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D
(⟂G `  G ) ( A L b ) )
535, 6, 7, 19, 46, 47, 51, 52perpneq 25609 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D  =/=  ( A L b ) )
5445, 53mtand 691 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  -.  D (⟂G `  G
) ( A L b ) )
5554ex 450 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( -.  A  =  b  ->  -.  D (⟂G `  G
) ( A L b ) ) )
5655con4d 114 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( D
(⟂G `  G ) ( A L b )  ->  A  =  b ) )
57 idd 24 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( A  =  b  ->  A  =  b ) )
5856, 57jaod 395 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( ( D (⟂G `  G )
( A L b )  \/  A  =  b )  ->  A  =  b ) )
5958impr 649 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  A  =  b )
6059eqcomd 2628 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  b  =  A )
61 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  b  =  A )
6261oveq2d 6666 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G )
b )  =  ( A (midG `  G
) A ) )
635, 6, 7, 8, 10, 1, 1midid 25673 . . . . . . . . 9  |-  ( ph  ->  ( A (midG `  G ) A )  =  A )
6463ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G ) A )  =  A )
6562, 64eqtrd 2656 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G )
b )  =  A )
66 simpllr 799 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  A  e.  D )
6765, 66eqeltrd 2701 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G )
b )  e.  D
)
6861eqcomd 2628 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  A  =  b )
6968olcd 408 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )
7067, 69jca 554 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
7160, 70impbida 877 . . . 4  |-  ( ( ( ph  /\  A  e.  D )  /\  b  e.  P )  ->  (
( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  A ) )
7271ralrimiva 2966 . . 3  |-  ( (
ph  /\  A  e.  D )  ->  A. b  e.  P  ( (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  A ) )
73 reu6i 3397 . . 3  |-  ( ( A  e.  P  /\  A. b  e.  P  ( ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  A ) )  ->  E! b  e.  P  ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
742, 72, 73syl2anc 693 . 2  |-  ( (
ph  /\  A  e.  D )  ->  E! b  e.  P  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
758adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  D )  ->  G  e. TarskiG )
7675ad2antrr 762 . . . . 5  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  G  e. TarskiG )
7721adantr 481 . . . . . . 7  |-  ( (
ph  /\  -.  A  e.  D )  ->  D  e.  ran  L )
7877ad2antrr 762 . . . . . 6  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  D  e.  ran  L )
79 simplr 792 . . . . . 6  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  x  e.  D
)
805, 19, 7, 76, 78, 79tglnpt 25444 . . . . 5  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  x  e.  P
)
81 eqid 2622 . . . . 5  |-  ( (pInvG `  G ) `  x
)  =  ( (pInvG `  G ) `  x
)
821adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  D )  ->  A  e.  P )
8382ad2antrr 762 . . . . 5  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  A  e.  P
)
845, 6, 7, 19, 14, 76, 80, 81, 83mircl 25556 . . . 4  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  ( ( (pInvG `  G ) `  x
) `  A )  e.  P )
85 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  ( A (midG `  G ) b )  ->  ( A L x )  =  ( A L ( A (midG `  G )
b ) ) )
8685breq1d 4663 . . . . . . . . 9  |-  ( x  =  ( A (midG `  G ) b )  ->  ( ( A L x ) (⟂G `  G ) D  <->  ( A L ( A (midG `  G ) b ) ) (⟂G `  G
) D ) )
87 simprl 794 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  D
)
88 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  A  e.  D )  ->  -.  A  e.  D )
895, 6, 7, 19, 75, 77, 82, 88foot 25614 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  A  e.  D )  ->  E! x  e.  D  ( A L x ) (⟂G `  G ) D )
90 reurmo 3161 . . . . . . . . . . 11  |-  ( E! x  e.  D  ( A L x ) (⟂G `  G ) D  ->  E* x  e.  D  ( A L x ) (⟂G `  G
) D )
9189, 90syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  e.  D )  ->  E* x  e.  D  ( A L x ) (⟂G `  G ) D )
9291ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  E* x  e.  D  ( A L x ) (⟂G `  G ) D )
9379ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  x  e.  D )
94 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L x ) (⟂G `  G ) D )
9576ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  G  e. TarskiG )
9683ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  A  e.  P )
97 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  b  e.  P )
9810ad5antr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  GDimTarskiG 2 )
995, 6, 7, 95, 98, 96, 97midcl 25669 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  P
)
1005, 6, 7, 95, 98, 96, 97midbtwn 25671 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  ( A I b ) )
10188ad4antr 768 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  -.  A  e.  D )
102 nelne2 2891 . . . . . . . . . . . . 13  |-  ( ( ( A (midG `  G ) b )  e.  D  /\  -.  A  e.  D )  ->  ( A (midG `  G ) b )  =/=  A )
10387, 101, 102syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  =/=  A
)
1045, 6, 7, 95, 96, 99, 97, 100, 103tgbtwnne 25385 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  A  =/=  b )
1055, 7, 19, 95, 96, 97, 99, 104, 100btwnlng1 25514 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  ( A L b ) )
1065, 7, 19, 95, 96, 97, 104, 99, 103, 105tglineelsb2 25527 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L b )  =  ( A L ( A (midG `  G
) b ) ) )
10778ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  D  e.  ran  L )
1085, 7, 19, 95, 96, 97, 104tgelrnln 25525 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L b )  e. 
ran  L )
109104neneqd 2799 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  -.  A  =  b )
110 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( D
(⟂G `  G ) ( A L b )  \/  A  =  b ) )
111110orcomd 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A  =  b  \/  D
(⟂G `  G ) ( A L b ) ) )
112111ord 392 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( -.  A  =  b  ->  D (⟂G `  G )
( A L b ) ) )
113109, 112mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  D (⟂G `  G ) ( A L b ) )
1145, 6, 7, 19, 95, 107, 108, 113perpcom 25608 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L b ) (⟂G `  G ) D )
115106, 114eqbrtrrd 4677 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L ( A (midG `  G ) b ) ) (⟂G `  G
) D )
11686, 87, 92, 93, 94, 115rmoi2 3532 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  x  =  ( A (midG `  G
) b ) )
117116eqcomd 2628 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  =  x )
11880ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  x  e.  P )
1195, 6, 7, 95, 98, 96, 97, 14, 118ismidb 25670 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( b  =  ( ( (pInvG `  G ) `  x
) `  A )  <->  ( A (midG `  G
) b )  =  x ) )
120117, 119mpbird 247 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)
121 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)
12276ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  G  e. TarskiG )
12310ad5antr 770 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  GDimTarskiG 2 )
12483ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  A  e.  P )
125 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  b  e.  P )
12680ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  x  e.  P )
1275, 6, 7, 122, 123, 124, 125, 14, 126ismidb 25670 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( b  =  ( ( (pInvG `  G ) `  x
) `  A )  <->  ( A (midG `  G
) b )  =  x ) )
128121, 127mpbid 222 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( A
(midG `  G )
b )  =  x )
12979ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  x  e.  D )
130128, 129eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( A
(midG `  G )
b )  e.  D
)
131122adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  G  e. TarskiG )
132 simp-4r 807 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  ( A L x ) (⟂G `  G ) D )
13319, 131, 132perpln1 25605 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  ( A L x )  e. 
ran  L )
13478ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  D  e.  ran  L )
1355, 6, 7, 19, 131, 133, 134, 132perpcom 25608 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  D
(⟂G `  G ) ( A L x ) )
136124adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  A  e.  P )
137126adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  P )
1385, 7, 19, 131, 136, 137, 133tglnne 25523 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  A  =/=  x )
139 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  e.  P )
140 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  A  =/=  b )
141140necomd 2849 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  =/=  A )
1425, 6, 7, 19, 14, 131, 137, 81, 136mirbtwn 25553 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  ( ( ( (pInvG `  G ) `  x
) `  A )
I A ) )
143 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)
144143oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  (
b I A )  =  ( ( ( (pInvG `  G ) `  x ) `  A
) I A ) )
145142, 144eleqtrrd 2704 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  ( b I A ) )
1465, 7, 19, 131, 139, 136, 137, 141, 145btwnlng1 25514 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  ( b L A ) )
1475, 7, 19, 131, 136, 137, 139, 138, 146, 141lnrot1 25518 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  e.  ( A L x ) )
1485, 7, 19, 131, 136, 137, 138, 139, 141, 147tglineelsb2 25527 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  ( A L x )  =  ( A L b ) )
149135, 148breqtrd 4679 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  D
(⟂G `  G ) ( A L b ) )
150149ex 450 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( A  =/=  b  ->  D (⟂G `  G ) ( A L b ) ) )
151150necon1bd 2812 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( -.  D (⟂G `  G )
( A L b )  ->  A  =  b ) )
152151orrd 393 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( D
(⟂G `  G ) ( A L b )  \/  A  =  b ) )
153130, 152jca 554 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )
154120, 153impbida 877 . . . . 5  |-  ( ( ( ( ( ph  /\ 
-.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  ->  ( (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
) )
155154ralrimiva 2966 . . . 4  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  A. b  e.  P  ( ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) )  <-> 
b  =  ( ( (pInvG `  G ) `  x ) `  A
) ) )
156 reu6i 3397 . . . 4  |-  ( ( ( ( (pInvG `  G ) `  x
) `  A )  e.  P  /\  A. b  e.  P  ( (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
) )  ->  E! b  e.  P  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
15784, 155, 156syl2anc 693 . . 3  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  E! b  e.  P  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )
1585, 6, 7, 19, 75, 77, 82, 88footex 25613 . . 3  |-  ( (
ph  /\  -.  A  e.  D )  ->  E. x  e.  D  ( A L x ) (⟂G `  G ) D )
159157, 158r19.29a 3078 . 2  |-  ( (
ph  /\  -.  A  e.  D )  ->  E! b  e.  P  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
16074, 159pm2.61dan 832 1  |-  ( ph  ->  E! b  e.  P  ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E!wreu 2914   E*wrmo 2915   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   2c2 11070   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ⟂Gcperpg 25590  midGcmid 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666
This theorem is referenced by:  lmif  25677  islmib  25679
  Copyright terms: Public domain W3C validator