MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem7 Structured version   Visualization version   Unicode version

Theorem ttukeylem7 9337
Description: Lemma for ttukey 9340. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
ttukeylem.2  |-  ( ph  ->  B  e.  A )
ttukeylem.3  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
ttukeylem.4  |-  G  = recs ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
Assertion
Ref Expression
ttukeylem7  |-  ( ph  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) )
Distinct variable groups:    x, y,
z, G    ph, y, z   
x, A, y, z   
x, B, y, z   
x, F, z
Allowed substitution hints:    ph( x)    F( y)

Proof of Theorem ttukeylem7
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4  |-  ( card `  ( U. A  \  B ) )  e. 
_V
21sucid 5804 . . 3  |-  ( card `  ( U. A  \  B ) )  e. 
suc  ( card `  ( U. A  \  B ) )
3 ttukeylem.1 . . . 4  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
4 ttukeylem.2 . . . 4  |-  ( ph  ->  B  e.  A )
5 ttukeylem.3 . . . 4  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
6 ttukeylem.4 . . . 4  |-  G  = recs ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
73, 4, 5, 6ttukeylem6 9336 . . 3  |-  ( (
ph  /\  ( card `  ( U. A  \  B ) )  e. 
suc  ( card `  ( U. A  \  B ) ) )  ->  ( G `  ( card `  ( U. A  \  B ) ) )  e.  A )
82, 7mpan2 707 . 2  |-  ( ph  ->  ( G `  ( card `  ( U. A  \  B ) ) )  e.  A )
93, 4, 5, 6ttukeylem4 9334 . . 3  |-  ( ph  ->  ( G `  (/) )  =  B )
10 0elon 5778 . . . . 5  |-  (/)  e.  On
11 cardon 8770 . . . . 5  |-  ( card `  ( U. A  \  B ) )  e.  On
12 0ss 3972 . . . . 5  |-  (/)  C_  ( card `  ( U. A  \  B ) )
1310, 11, 123pm3.2i 1239 . . . 4  |-  ( (/)  e.  On  /\  ( card `  ( U. A  \  B ) )  e.  On  /\  (/)  C_  ( card `  ( U. A  \  B ) ) )
143, 4, 5, 6ttukeylem5 9335 . . . 4  |-  ( (
ph  /\  ( (/)  e.  On  /\  ( card `  ( U. A  \  B ) )  e.  On  /\  (/)  C_  ( card `  ( U. A  \  B ) ) ) )  -> 
( G `  (/) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
1513, 14mpan2 707 . . 3  |-  ( ph  ->  ( G `  (/) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
169, 15eqsstr3d 3640 . 2  |-  ( ph  ->  B  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
17 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  ( G `  ( card `  ( U. A  \  B ) ) )  C_  y )
18 ssun1 3776 . . . . . . . 8  |-  y  C_  ( y  u.  B
)
19 undif1 4043 . . . . . . . 8  |-  ( ( y  \  B )  u.  B )  =  ( y  u.  B
)
2018, 19sseqtr4i 3638 . . . . . . 7  |-  y  C_  ( ( y  \  B )  u.  B
)
21 simpl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ph )
22 f1ocnv 6149 . . . . . . . . . . . . . . . . 17  |-  ( F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  ->  `' F : ( U. A  \  B ) -1-1-onto-> ( card `  ( U. A  \  B ) ) )
23 f1of 6137 . . . . . . . . . . . . . . . . 17  |-  ( `' F : ( U. A  \  B ) -1-1-onto-> ( card `  ( U. A  \  B ) )  ->  `' F : ( U. A  \  B ) --> (
card `  ( U. A  \  B ) ) )
243, 22, 233syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  `' F : ( U. A  \  B ) --> (
card `  ( U. A  \  B ) ) )
2524adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  `' F :
( U. A  \  B ) --> ( card `  ( U. A  \  B ) ) )
26 eldifi 3732 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( y  \  B )  ->  a  e.  y )
2726ad2antll 765 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  y )
28 simprll 802 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  y  e.  A
)
29 elunii 4441 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  y  /\  y  e.  A )  ->  a  e.  U. A
)
3027, 28, 29syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  U. A )
31 eldifn 3733 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( y  \  B )  ->  -.  a  e.  B )
3231ad2antll 765 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  -.  a  e.  B )
3330, 32eldifd 3585 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  ( U. A  \  B
) )
3425, 33ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( `' F `  a )  e.  (
card `  ( U. A  \  B ) ) )
35 onelon 5748 . . . . . . . . . . . . . 14  |-  ( ( ( card `  ( U. A  \  B ) )  e.  On  /\  ( `' F `  a )  e.  ( card `  ( U. A  \  B ) ) )  ->  ( `' F `  a )  e.  On )
3611, 34, 35sylancr 695 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( `' F `  a )  e.  On )
37 suceloni 7013 . . . . . . . . . . . . 13  |-  ( ( `' F `  a )  e.  On  ->  suc  ( `' F `  a )  e.  On )
3836, 37syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  suc  ( `' F `  a )  e.  On )
3911a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( card `  ( U. A  \  B ) )  e.  On )
4011onordi 5832 . . . . . . . . . . . . 13  |-  Ord  ( card `  ( U. A  \  B ) )
41 ordsucss 7018 . . . . . . . . . . . . 13  |-  ( Ord  ( card `  ( U. A  \  B ) )  ->  ( ( `' F `  a )  e.  ( card `  ( U. A  \  B ) )  ->  suc  ( `' F `  a ) 
C_  ( card `  ( U. A  \  B ) ) ) )
4240, 34, 41mpsyl 68 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  suc  ( `' F `  a )  C_  ( card `  ( U. A  \  B ) ) )
433, 4, 5, 6ttukeylem5 9335 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( suc  ( `' F `  a )  e.  On  /\  ( card `  ( U. A  \  B ) )  e.  On  /\  suc  ( `' F `  a ) 
C_  ( card `  ( U. A  \  B ) ) ) )  -> 
( G `  suc  ( `' F `  a ) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
4421, 38, 39, 42, 43syl13anc 1328 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  suc  ( `' F `  a ) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
45 ssun2 3777 . . . . . . . . . . . . 13  |-  if ( ( ( G `  U. suc  ( `' F `  a ) )  u. 
{ ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) )  C_  (
( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) )
46 eloni 5733 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' F `  a )  e.  On  ->  Ord  ( `' F `  a ) )
47 ordunisuc 7032 . . . . . . . . . . . . . . . . . 18  |-  ( Ord  ( `' F `  a )  ->  U. suc  ( `' F `  a )  =  ( `' F `  a ) )
4836, 46, 473syl 18 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  U. suc  ( `' F `  a )  =  ( `' F `  a ) )
4948fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( F `  U. suc  ( `' F `  a ) )  =  ( F `  ( `' F `  a ) ) )
503adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  F : (
card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B
) )
51 f1ocnvfv2 6533 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  /\  a  e.  ( U. A  \  B ) )  ->  ( F `  ( `' F `  a ) )  =  a )
5250, 33, 51syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( F `  ( `' F `  a ) )  =  a )
5349, 52eqtr2d 2657 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  =  ( F `  U. suc  ( `' F `  a ) ) )
54 velsn 4193 . . . . . . . . . . . . . . 15  |-  ( a  e.  { ( F `
 U. suc  ( `' F `  a ) ) }  <->  a  =  ( F `  U. suc  ( `' F `  a ) ) )
5553, 54sylibr 224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  {
( F `  U. suc  ( `' F `  a ) ) } )
5648fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  U. suc  ( `' F `  a ) )  =  ( G `  ( `' F `  a ) ) )
57 ordelss 5739 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  ( card `  ( U. A  \  B ) )  /\  ( `' F `  a )  e.  ( card `  ( U. A  \  B ) ) )  ->  ( `' F `  a ) 
C_  ( card `  ( U. A  \  B ) ) )
5840, 34, 57sylancr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( `' F `  a )  C_  ( card `  ( U. A  \  B ) ) )
593, 4, 5, 6ttukeylem5 9335 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( ( `' F `  a )  e.  On  /\  ( card `  ( U. A  \  B ) )  e.  On  /\  ( `' F `  a ) 
C_  ( card `  ( U. A  \  B ) ) ) )  -> 
( G `  ( `' F `  a ) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
6021, 36, 39, 58, 59syl13anc 1328 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  ( `' F `  a ) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
6156, 60eqsstrd 3639 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  U. suc  ( `' F `  a ) )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
62 simprlr 803 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  ( card `  ( U. A  \  B ) ) )  C_  y )
6361, 62sstrd 3613 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  U. suc  ( `' F `  a ) )  C_  y )
6453, 27eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( F `  U. suc  ( `' F `  a ) )  e.  y )
6564snssd 4340 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  { ( F `
 U. suc  ( `' F `  a ) ) }  C_  y
)
6663, 65unssd 3789 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( ( G `
 U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  C_  y )
673, 4, 5ttukeylem2 9332 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  A  /\  (
( G `  U. suc  ( `' F `  a ) )  u. 
{ ( F `  U. suc  ( `' F `  a ) ) } )  C_  y )
)  ->  ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A )
6821, 28, 66, 67syl12anc 1324 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( ( G `
 U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A )
6968iftrued 4094 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  if ( ( ( G `  U. suc  ( `' F `  a ) )  u. 
{ ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) )  =  {
( F `  U. suc  ( `' F `  a ) ) } )
7055, 69eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  if ( ( ( G `
 U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) )
7145, 70sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  ( ( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) ) )
723, 4, 5, 6ttukeylem3 9333 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  suc  ( `' F `  a )  e.  On )  -> 
( G `  suc  ( `' F `  a ) )  =  if ( suc  ( `' F `  a )  =  U. suc  ( `' F `  a ) ,  if ( suc  ( `' F `  a )  =  (/) ,  B ,  U. ( G " suc  ( `' F `  a ) ) ) ,  ( ( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) ) ) )
7338, 72syldan 487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  suc  ( `' F `  a ) )  =  if ( suc  ( `' F `  a )  =  U. suc  ( `' F `  a ) ,  if ( suc  ( `' F `  a )  =  (/) ,  B ,  U. ( G " suc  ( `' F `  a ) ) ) ,  ( ( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) ) ) )
74 sucidg 5803 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' F `  a )  e.  ( card `  ( U. A  \  B ) )  ->  ( `' F `  a )  e.  suc  ( `' F `  a ) )
7534, 74syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( `' F `  a )  e.  suc  ( `' F `  a ) )
76 ordirr 5741 . . . . . . . . . . . . . . . . . 18  |-  ( Ord  ( `' F `  a )  ->  -.  ( `' F `  a )  e.  ( `' F `  a ) )
7736, 46, 763syl 18 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  -.  ( `' F `  a )  e.  ( `' F `  a ) )
78 nelne1 2890 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' F `  a )  e.  suc  ( `' F `  a )  /\  -.  ( `' F `  a )  e.  ( `' F `  a ) )  ->  suc  ( `' F `  a )  =/=  ( `' F `  a ) )
7975, 77, 78syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  suc  ( `' F `  a )  =/=  ( `' F `  a ) )
8079, 48neeqtrrd 2868 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  suc  ( `' F `  a )  =/=  U. suc  ( `' F `  a ) )
8180neneqd 2799 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  -.  suc  ( `' F `  a )  =  U. suc  ( `' F `  a ) )
8281iffalsed 4097 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  if ( suc  ( `' F `  a )  =  U. suc  ( `' F `  a ) ,  if ( suc  ( `' F `  a )  =  (/) ,  B ,  U. ( G " suc  ( `' F `  a ) ) ) ,  ( ( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) ) )  =  ( ( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) ) )
8373, 82eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  ( G `  suc  ( `' F `  a ) )  =  ( ( G `  U. suc  ( `' F `  a ) )  u.  if ( ( ( G `  U. suc  ( `' F `  a ) )  u.  { ( F `  U. suc  ( `' F `  a ) ) } )  e.  A ,  { ( F `  U. suc  ( `' F `  a ) ) } ,  (/) ) ) )
8471, 83eleqtrrd 2704 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  ( G `  suc  ( `' F `  a ) ) )
8544, 84sseldd 3604 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y )  /\  a  e.  ( y  \  B ) ) )  ->  a  e.  ( G `  ( card `  ( U. A  \  B ) ) ) )
8685expr 643 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  ( a  e.  ( y  \  B
)  ->  a  e.  ( G `  ( card `  ( U. A  \  B ) ) ) ) )
8786ssrdv 3609 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  ( y  \  B )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
8816adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  B  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
8987, 88unssd 3789 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  ( ( y 
\  B )  u.  B )  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
9020, 89syl5ss 3614 . . . . . 6  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  y  C_  ( G `  ( card `  ( U. A  \  B ) ) ) )
9117, 90eqssd 3620 . . . . 5  |-  ( (
ph  /\  ( y  e.  A  /\  ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y ) )  ->  ( G `  ( card `  ( U. A  \  B ) ) )  =  y )
9291expr 643 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  (
( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y  ->  ( G `  ( card `  ( U. A  \  B ) ) )  =  y ) )
93 npss 3717 . . . 4  |-  ( -.  ( G `  ( card `  ( U. A  \  B ) ) ) 
C.  y  <->  ( ( G `  ( card `  ( U. A  \  B ) ) ) 
C_  y  ->  ( G `  ( card `  ( U. A  \  B ) ) )  =  y ) )
9492, 93sylibr 224 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  -.  ( G `  ( card `  ( U. A  \  B ) ) ) 
C.  y )
9594ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  A  -.  ( G `  ( card `  ( U. A  \  B ) ) ) 
C.  y )
96 sseq2 3627 . . . 4  |-  ( x  =  ( G `  ( card `  ( U. A  \  B ) ) )  ->  ( B  C_  x  <->  B  C_  ( G `
 ( card `  ( U. A  \  B ) ) ) ) )
97 psseq1 3694 . . . . . 6  |-  ( x  =  ( G `  ( card `  ( U. A  \  B ) ) )  ->  ( x  C.  y  <->  ( G `  ( card `  ( U. A  \  B ) ) )  C.  y )
)
9897notbid 308 . . . . 5  |-  ( x  =  ( G `  ( card `  ( U. A  \  B ) ) )  ->  ( -.  x  C.  y  <->  -.  ( G `  ( card `  ( U. A  \  B ) ) ) 
C.  y ) )
9998ralbidv 2986 . . . 4  |-  ( x  =  ( G `  ( card `  ( U. A  \  B ) ) )  ->  ( A. y  e.  A  -.  x  C.  y  <->  A. y  e.  A  -.  ( G `  ( card `  ( U. A  \  B ) ) ) 
C.  y ) )
10096, 99anbi12d 747 . . 3  |-  ( x  =  ( G `  ( card `  ( U. A  \  B ) ) )  ->  ( ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y )  <->  ( B  C_  ( G `  ( card `  ( U. A  \  B ) ) )  /\  A. y  e.  A  -.  ( G `
 ( card `  ( U. A  \  B ) ) )  C.  y
) ) )
101100rspcev 3309 . 2  |-  ( ( ( G `  ( card `  ( U. A  \  B ) ) )  e.  A  /\  ( B  C_  ( G `  ( card `  ( U. A  \  B ) ) )  /\  A. y  e.  A  -.  ( G `  ( card `  ( U. A  \  B ) ) ) 
C.  y ) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) )
1028, 16, 95, 101syl12anc 1324 1  |-  ( ph  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Ord word 5722   Oncon0 5723   suc csuc 5725   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  recscrecs 7467   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-card 8765
This theorem is referenced by:  ttukey2g  9338
  Copyright terms: Public domain W3C validator