MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunr1om Structured version   Visualization version   Unicode version

Theorem wunr1om 9541
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1  |-  ( ph  ->  U  e. WUni )
Assertion
Ref Expression
wunr1om  |-  ( ph  ->  ( R1 " om )  C_  U )

Proof of Theorem wunr1om
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
21eleq1d 2686 . . . . . 6  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  U  <->  ( R1 `  (/) )  e.  U
) )
3 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
43eleq1d 2686 . . . . . 6  |-  ( x  =  y  ->  (
( R1 `  x
)  e.  U  <->  ( R1 `  y )  e.  U
) )
5 fveq2 6191 . . . . . . 7  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
65eleq1d 2686 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( R1 `  x )  e.  U  <->  ( R1 `  suc  y
)  e.  U ) )
7 r10 8631 . . . . . . 7  |-  ( R1
`  (/) )  =  (/)
8 wun0.1 . . . . . . . 8  |-  ( ph  ->  U  e. WUni )
98wun0 9540 . . . . . . 7  |-  ( ph  -> 
(/)  e.  U )
107, 9syl5eqel 2705 . . . . . 6  |-  ( ph  ->  ( R1 `  (/) )  e.  U )
118adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( R1 `  y )  e.  U
)  ->  U  e. WUni )
12 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
)
1311, 12wunpw 9529 . . . . . . . 8  |-  ( (
ph  /\  ( R1 `  y )  e.  U
)  ->  ~P ( R1 `  y )  e.  U )
14 nnon 7071 . . . . . . . . . 10  |-  ( y  e.  om  ->  y  e.  On )
15 r1suc 8633 . . . . . . . . . 10  |-  ( y  e.  On  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
1614, 15syl 17 . . . . . . . . 9  |-  ( y  e.  om  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
1716eleq1d 2686 . . . . . . . 8  |-  ( y  e.  om  ->  (
( R1 `  suc  y )  e.  U  <->  ~P ( R1 `  y
)  e.  U ) )
1813, 17syl5ibr 236 . . . . . . 7  |-  ( y  e.  om  ->  (
( ph  /\  ( R1 `  y )  e.  U )  ->  ( R1 `  suc  y )  e.  U ) )
1918expd 452 . . . . . 6  |-  ( y  e.  om  ->  ( ph  ->  ( ( R1
`  y )  e.  U  ->  ( R1 ` 
suc  y )  e.  U ) ) )
202, 4, 6, 10, 19finds2 7094 . . . . 5  |-  ( x  e.  om  ->  ( ph  ->  ( R1 `  x )  e.  U
) )
21 eleq1 2689 . . . . . 6  |-  ( ( R1 `  x )  =  y  ->  (
( R1 `  x
)  e.  U  <->  y  e.  U ) )
2221imbi2d 330 . . . . 5  |-  ( ( R1 `  x )  =  y  ->  (
( ph  ->  ( R1
`  x )  e.  U )  <->  ( ph  ->  y  e.  U ) ) )
2320, 22syl5ibcom 235 . . . 4  |-  ( x  e.  om  ->  (
( R1 `  x
)  =  y  -> 
( ph  ->  y  e.  U ) ) )
2423rexlimiv 3027 . . 3  |-  ( E. x  e.  om  ( R1 `  x )  =  y  ->  ( ph  ->  y  e.  U ) )
25 r1fnon 8630 . . . . 5  |-  R1  Fn  On
26 fnfun 5988 . . . . 5  |-  ( R1  Fn  On  ->  Fun  R1 )
2725, 26ax-mp 5 . . . 4  |-  Fun  R1
28 fvelima 6248 . . . 4  |-  ( ( Fun  R1  /\  y  e.  ( R1 " om ) )  ->  E. x  e.  om  ( R1 `  x )  =  y )
2927, 28mpan 706 . . 3  |-  ( y  e.  ( R1 " om )  ->  E. x  e.  om  ( R1 `  x )  =  y )
3024, 29syl11 33 . 2  |-  ( ph  ->  ( y  e.  ( R1 " om )  ->  y  e.  U ) )
3130ssrdv 3609 1  |-  ( ph  ->  ( R1 " om )  C_  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   "cima 5117   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   omcom 7065   R1cr1 8625  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-wun 9524
This theorem is referenced by:  wunom  9542
  Copyright terms: Public domain W3C validator