MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fnon Structured version   Visualization version   Unicode version

Theorem r1fnon 8630
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1fnon  |-  R1  Fn  On

Proof of Theorem r1fnon
StepHypRef Expression
1 rdgfnon 7514 . 2  |-  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )  Fn  On
2 df-r1 8627 . . 3  |-  R1  =  rec ( ( x  e. 
_V  |->  ~P x ) ,  (/) )
32fneq1i 5985 . 2  |-  ( R1  Fn  On  <->  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )  Fn  On )
41, 3mpbir 221 1  |-  R1  Fn  On
Colors of variables: wff setvar class
Syntax hints:   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158    |-> cmpt 4729   Oncon0 5723    Fn wfn 5883   reccrdg 7505   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  r1suc  8633  r1lim  8635  r111  8638  r1ord  8643  r1ord3  8645  r1elss  8669  jech9.3  8677  onwf  8693  ssrankr1  8698  r1val3  8701  r1pw  8708  rankuni  8726  rankr1b  8727  r1om  9066  hsmexlem6  9253  smobeth  9408  wunr1om  9541  r1limwun  9558  r1wunlim  9559  tskr1om  9589  tskr1om2  9590  inar1  9597  rankcf  9599  inatsk  9600  r1tskina  9604  grur1  9642  grothomex  9651  aomclem4  37627
  Copyright terms: Public domain W3C validator